
Introduction to Fourier series
by Ken Richardson

Hilbert spaces
A real inner product on a real vector spaceV (which could be infinite

dimensional) is a map∙ , ∙ : V × V → R that satisfies the following properties:
● (Symmetry) 〈v,w〉 = 〈w,v〉 for all v,w ∈ V .
● (Linearity) 〈av + bw,z〉 = a〈v,z〉 + b〈w,z〉 for all a,b ∈ R and allv,w,z ∈ V .
● (Positivity) 〈v,v〉 ≥ 0 for all v ∈ V, with equality only ifv = 0 .

Similarly, aHermitian (or complex) inner product on a complex vector spaceV
(which could be infinite dimensional) is a map∙ , ∙ : V × V → C that satisfies the
following properties:

● (Symmetry) 〈v,w〉 = 〈w,v〉 for all v,w ∈ V . (Here, z means the complex conjugate.)
● (Linearity) 〈av + bw,z〉 = a〈v,z〉 + b〈w,z〉 for all a,b ∈ C and allv,w,z ∈ V .
● (Positivity) 〈v,v〉 ≥ 0 for all v ∈ V, with equality only ifv = 0 .

A vector spaceV,〈∙,∙〉 with real or complex inner product is called aninner
product space.

A subsete1,e2, . . . of an inner product spaceV is calledorthonormal if

〈e i,e j 〉 = δ ij =
1 if i = j

0 if i ≠ j

This set is called abasis (or complete orthonormal basis) if it spansV. The symbolδ ij

is called theKronecker delta symbol.
Any inner product spaceV,〈∙,∙〉 comes equipped with a norm‖∙‖ = 〈∙,∙〉1/2

called the inner product norm. From this one may make the vector space into a
topological metric space using the distance functiondv,w = ‖v − w‖. We say that the
inner product space iscomplete if all Cauchy sequences converge (with respect to that
distance and norm). Equivalently,V,〈∙,∙〉 is complete if

∑
k=0

∞

‖vk‖ < ∞

implies always that∑
k=0
∞ vk converges inV. A complete inner product space is called a

Hilbert space. We say that a Hilbert space isseparable if there exists a (countable)
complete orthonormal basis. It turns out that all separableinfinite-dimensional (real or
complex) Hilbert spaces are isomorphic (say, toℓ2 ; see below).

Importantexamples of Hilbert spaces are as follows:
● R

n or Cn with 〈x,y〉 = ∑
j=1
n x jy j .

● ℓ2R or ℓ2C, which is the space of sequencesx = x1,x2, . . . such that∑
j=1
∞ |x j |

2 < ∞
with inner product
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〈x,y〉 = ∑
j=1

∞

x jy j .

Then1,0,0, . . .,0,1,0,0, . . .,0,0,1,0,0, . . ., . . . is a complete orthonormal basis of
ℓ2R (or ℓ2C ).

● L2S1, the space of square-integrable functions on the unit circle. We have:

L2S1 = f : S1 → C : ∫
S1

|f|2 < ∞

= g : R → C : ∫
0

2π
|gx|2 dx < ∞ andgx + 2π = gx

with inner product

〈f,g〉 = ∫
−π

π

fxgx dx.

One can check that the product given above satisfies the definition of Hermitian inner
product. One technical detail is that you have to say that twofunctions inL2S1 are
considered to be the same if they are equal except on a set of measure zero. We have to do
this, because otherwise the positivity property would not be satisfied.

An example of an orthogonal set inL2S1 is
1,cosx, sinx, cos2x, sin2x, . . .. We can verify that

∫
−π

π

1 ⋅ cosnx dx = ∫
−π

π

1 ⋅ sinnx dx = 0 if n ∈ Z,

∫
−π

π

sinmx ⋅ cosnx dx = 0 for n,m ∈ Z

∫
−π

π

cosmx ⋅ cosnx dx = ∫
−π

π

sinmx ⋅ sinnx dx =
0 if n ≠ m

π if n = m ∈ N

∫
−π

π

1 dx = 2π.

Then

1
2π

, 1
π

cosx, 1
π

sinx, 1
π

cos2x, 1
π

sin2x, . . .

is an orthonormal set inL2S1. By a very deep and difficult theorem, this set is a
complete orthonormal basis. The hard part (and only remaining part) is to show is that
it spansL2S1. This is equivalent to showing that ifhx is in L2S1 such that
〈h,α〉 = 0 for every elementα in the orthonormal set, thenhx = 0 in L2S1. Another

commonly used orthonormal basis forL2S1 is 1
2π

e inθ

n∈Z
.

Note that given any orthonormal basise1,e2, . . . of a Hilbert spaceV and any
vectorv ∈ V,
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v = ∑
j=1

∞

〈v,e j 〉e j ,

that is the sum on the right converges tov (using the inner product norm). Note that
〈v,e j 〉e j is the projection ofv ontoe j. Sometimes the number〈v,e j 〉 is called thej th

Fourier coefficient. We can take theL2 norm of both sides of the equation to get
Parseval’s equality (or Parseval Identity):

〈v,v〉 = ∑
j=1

∞

〈v,e j 〉e j,∑
k=1

∞

〈v,ek 〉ek

= ∑
j=1

∞

∑
k=1

∞

〈v,e j 〉〈v,ek 〉〈e j,ek 〉

= ∑
j=1

∞

|〈v,e j 〉|
2.

(One has to check that you are allowed to move the infinite sumout of the inner
product; this works by taking limits of finite sums.) In the case where you have an
orthonormal setbj that is not necessarily a basis, you getBessel’s inequality:

〈v,v〉 ≤ ∑
j

|〈v,bj 〉|
2.

Another (real or complex) Hilbert space fact that will be useful is the
Cauchy-Schwarz inequality:

|〈v,w〉| ≤ ‖v‖ ‖w‖.

This can be quite interesting when applying to various innerproducts. For example,
applying to theL2 inner product: iff is anL2 function, then

|〈f,1〉| = ∫
−π

π

fx dx , so

∫
−π

π

fx dx ≤ 2π ∫
−π

π

fx2 dx .

Similarly,

∫
−π

π

fxcosnx dx ≤ π ∫
−π

π

fx2 dx .

Fourier Series
The very specific application of the Hilbert space facts toL2S1 with basis either
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en = 1
2π

e inθ

n∈Z
or 1

2π
, 1

π
cosx, 1

π
sinx, 1

π
cos2x, 1

π
sin2x, . . .

yields the study of Fourier series.
The first fact is that any function inL2S1 can be represented by

f = ∑
n∈Z

cnen ,

where

cn = 〈f,en 〉 = 1
2π

∫
−π

π

fxexp−inx dx

is thenth Fourier coefficient. Furthermore, the Parseval identity shows that

∫
−π

π

fx2dx = ∑
n∈Z

|cn |2.

Similar results for the other basis are:

fx = a0 +∑
j=1

∞

aj cosjx +∑
k=1

∞

bj sinjx,

a0 = 1
2π ∫−π

π

fx dx, aj = 1
π ∫−π

π

fxcosjx dx for j ≥ 1,

bk = 1
π ∫−π

π

fxsinkx dx.

The Parseval identity is

∫
−π

π

fx2dx = 2π|a0|2 + π∑
j=1

∞

|aj |
2 + |bj |

2 .

The convergence of the Fourier series is with respect to the Hilbert space norm. For
example, this means for instance that for anyL2 functionf,

f − ∑
n=−N

N

cnen → 0

asN goes to infinity, with‖g‖ = ∫
−π

π
gx2dx . But it turns out that if we assume

additional conditions onf, other types of convergence are also manifested. Here are the
two important theorems:

Theorem Suppose that f ∈ L2S1 is piecewise C1(continuously differentiable) and
continuous. Then the Fourier series of f converges pointwise and uniformly to f.

The phrase “converges pointwise” means that for each fixedx ∈ −π,π, if
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FNx = a0 +∑
j=1

N

aj cosjx +∑
k=1

N

bj sinjx,

then lim
N→∞

FNx = fx. (Similarly for theen basis.). The phrase “converges uniformly”

means that given > 0, there existsM > 0 such that for allN ≥ M andall x ∈ −π,π,

|FNx − fx| < .

The next theorem deals with the case where there are jump discontinuities:

Theorem Suppose that f ∈ L2S1 is piecewise C1 and has a finite number of jump
discontinuities. Then the Fourier series of f converges to

f x = 1
2

lim
y→x−

fy + lim
y→x+

fy .

This theorem will be demonstrated in the examples. At all pointsx wheref is
continuous, note that the Fourier series converges tofx. Notice also that the word
“uniform” is removed from the conclusion. In fact, a very interesting situation occurs
when there is a point of discontinuity off, where the Fourier series converges to the
average of the left and right limits. As the numberN increases, there arex-values very
close to the point of discontinuity whereFNx differs fromfx by an amount that does
not decrease and in fact converges to the number

a0.08949. . .,

wherea is the gap between the left and right limits, and the number 0.08949. . . is
called the Wilbraham–Gibbs constant. The exact formula forthe constant is

1
π ∫0

π sinx
x dx − 1

2
.

This situation is called theGibbs Phenomenon. We will see this phenomenon in the
examples.

Examples and Applications

Square Wave
Define

fx =
−1 if − π ≤ x ≤ 0

1 if 0 ≤ x < π

We now compute the Fourier series:

5



a0 = 1
2π ∫−π

π

fx dx = 0,

aj = 1
π ∫−π

π

fx cosjx dx = 0 for j ≥ 1

bk = 1
π ∫−π

π

fx sinkx dx

= 1
π −∫

−π

0
sinkx dx + ∫

0

π

sinkx dx

= 1
π

1
k

coskx
−π

0
− 1

k
coskx

0

π

= 2
πk

1 − −1k =
4
πk

k odd

0 otherwise

Thus we have

fx = ∑
k odd

4
kπ

sinkx

= 4
π sinx + 1

3
sin3x +. . . .

Plugging inx = π
2 , we get

1 = 4
π 1 − 1

3
+ 1

5
−. . . ,or

π = 4 − 4
3

+ 4
5

−. . . .

(A famous formula forπ !) Next, consider Parseval’s Identity:

∫
−π

π

fx2 dx = π∑
k odd

4
kπ

2
, or

2π = 16
π 1 + 1

32 + 1
52 +. . . ,

or

1 + 1
32 + 1

52 +. . .= π2

8
.

(another famous formula!)
Let’s now graph the square wave with some of the Fourier approximations:
y = ∑

n=0
N 4

2n+1π
sin2n + 1x
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Note the Gibbs Phenomenon:
∑

n=0
N 4

2n+1π
sin 2n + 1 π

2N+1

∑
n=0
5 4

2n+1π
sin2n + 1 π

11  = 1. 17345830790194905

∑
n=0
20 4

2n+1π
sin2n + 1 π

41  = 1. 17858309426023996

∑
n=0
50 4

2n+1π
sin 2n + 1 π

101 = 1. 17891438974940976
0.17891438974940976

2 = 0.08945719487470488

Sawtooth Wave
Define

fx = x

for −π ≤ x < π and can be thought of as being periodic. We now compute the Fourier
series:

a0 = 1
2π ∫−π

π

x dx = 0,

aj = 1
π ∫−π

π

x cosjx dx = 0 for j ≥ 1

bk = 1
π ∫−π

π

x sinkx dx

= 1
π

1
k2 sinkx − 1

k
xcoskx

−π

π

= 1
π − −1kπ − −1k−π

k
=

2−1k+1

k

Then
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x = ∑
k=1

∞
2−1k+1

k
sinkx.

Plugging inx = π
2 , we get

π
2

= 2 1 − 1
3

+ 1
5

−. . . ,

which yields the formula forπ found in the previous section. Parseval’s identity yields:

∫
−π

π

x2 dx = π∑
k=1

∞
4
k2 , or

2π3

3
= 4π∑

k=1

∞
1
k2 ,

so that

∑
k=1

∞
1
k2 = 1

4π
2π3

3
= π2

6
.

(Another famous formula! )
We now plot the Fourier approximations to the saw tooth wave:
y = ∑

k=1
N 2−1k+1

k
sinkx
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Let’s check out the Gibbs Phenomenon:
y = ∑

k=1
N 2−1k+1

k
sin k Nπ

N+1

y = ∑
k=1
5 2−1k+1

k
sin k 5π

6 = 3. 16570477234332464

y = ∑
k=1
20 2−1k+1

k
sink 20π

21  = 3. 5530869812998034
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y = ∑
k=1
50 2−1k+1

k
sin k 50π

51 = 3. 64207293630163028

y = ∑
k=1
200 2−1k+1

k
sin k 200π

201 = 3. 68823132970234016
3. 68823132970234016− 200π

201 = 0.562268490309511067
0.562268490309511067

2π =.0894878095775761379
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