
Introduction to Fourier series
by Ken Richardson

Hilbert spaces
A real inner product on a real vector spaceV (which could be infinite

dimensional) is a map∙ , ∙ : V × V → R that satisfies the following properties:
● (Symmetry) 〈v,w〉 = 〈w,v〉 for all v,w ∈ V .
● (Linearity) 〈av + bw,z〉 = a〈v,z〉 + b〈w,z〉 for all a,b ∈ R and allv,w,z ∈ V .
● (Positivity) 〈v,v〉 ≥ 0 for all v ∈ V, with equality only ifv = 0 .

Similarly, aHermitian (or complex) inner product on a complex vector spaceV
(which could be infinite dimensional) is a map∙ , ∙ : V × V → C that satisfies the
following properties:

● (Symmetry) 〈v,w〉 = 〈w,v〉 for all v,w ∈ V . (Here, z means the complex conjugate.)
● (Linearity) 〈av + bw,z〉 = a〈v,z〉 + b〈w,z〉 for all a,b ∈ C and allv,w,z ∈ V .
● (Positivity) 〈v,v〉 ≥ 0 for all v ∈ V, with equality only ifv = 0 .

A vector spaceV,〈∙,∙〉 with real or complex inner product is called aninner
product space.

A subsete1,e2, . . . of an inner product spaceV is calledorthonormal if

〈e i,e j 〉 = δ ij =
1 if i = j

0 if i ≠ j

This set is called abasis (or complete orthonormal basis) if it spansV. The symbolδ ij

is called theKronecker delta symbol.
Any inner product spaceV,〈∙,∙〉 comes equipped with a norm‖∙‖ = 〈∙,∙〉1/2

called the inner product norm. From this one may make the vector space into a
topological metric space using the distance functiondv,w = ‖v − w‖. We say that the
inner product space iscomplete if all Cauchy sequences converge (with respect to that
distance and norm). Equivalently,V,〈∙,∙〉 is complete if

∑
k=0

∞

‖vk‖ < ∞

implies always that∑
k=0
∞ vk converges inV. A complete inner product space is called a

Hilbert space. We say that a Hilbert space isseparable if there exists a (countable)
complete orthonormal basis. It turns out that all separableinfinite-dimensional (real or
complex) Hilbert spaces are isomorphic (say, toℓ2 ; see below).

Importantexamples of Hilbert spaces are as follows:
● R

n or Cn with 〈x,y〉 = ∑
j=1
n x jy j .

● ℓ2R or ℓ2C, which is the space of sequencesx = x1,x2, . . . such that∑
j=1
∞ |x j |

2 < ∞
with inner product
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〈x,y〉 = ∑
j=1

∞

x jy j .

Then1,0,0, . . .,0,1,0,0, . . .,0,0,1,0,0, . . ., . . . is a complete orthonormal basis of
ℓ2R (or ℓ2C ).

● L2S1, the space of square-integrable functions on the unit circle. We have:

L2S1 = f : S1 → C : ∫
S1

|f|2 < ∞

= g : R → C : ∫
0

2π
|gx|2 dx < ∞ andgx + 2π = gx

with inner product

〈f,g〉 = ∫
−π

π

fxgx dx.

One can check that the product given above satisfies the definition of Hermitian inner
product. One technical detail is that you have to say that twofunctions inL2S1 are
considered to be the same if they are equal except on a set of measure zero. We have to do
this, because otherwise the positivity property would not be satisfied.

An example of an orthogonal set inL2S1 is
1,cosx, sinx, cos2x, sin2x, . . .. We can verify that

∫
−π

π

1 ⋅ cosnx dx = ∫
−π

π

1 ⋅ sinnx dx = 0 if n ∈ Z,

∫
−π

π

sinmx ⋅ cosnx dx = 0 for n,m ∈ Z

∫
−π

π

cosmx ⋅ cosnx dx = ∫
−π

π

sinmx ⋅ sinnx dx =
0 if n ≠ m

π if n = m ∈ N

∫
−π

π

1 dx = 2π.

Then

1
2π

, 1
π

cosx, 1
π

sinx, 1
π

cos2x, 1
π

sin2x, . . .

is an orthonormal set inL2S1. By a very deep and difficult theorem, this set is a
complete orthonormal basis. The hard part (and only remaining part) is to show is that
it spansL2S1. This is equivalent to showing that ifhx is in L2S1 such that
〈h,α〉 = 0 for every elementα in the orthonormal set, thenhx = 0 in L2S1. Another

commonly used orthonormal basis forL2S1 is 1
2π

e inθ

n∈Z
.

Note that given any orthonormal basise1,e2, . . . of a Hilbert spaceV and any
vectorv ∈ V,
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v = ∑
j=1

∞

〈v,e j 〉e j ,

that is the sum on the right converges tov (using the inner product norm). Note that
〈v,e j 〉e j is the projection ofv ontoe j. Sometimes the number〈v,e j 〉 is called thej th

Fourier coefficient. We can take theL2 norm of both sides of the equation to get
Parseval’s equality (or Parseval Identity):

〈v,v〉 = ∑
j=1

∞

〈v,e j 〉e j,∑
k=1

∞

〈v,ek 〉ek

= ∑
j=1

∞

∑
k=1

∞

〈v,e j 〉〈v,ek 〉〈e j,ek 〉

= ∑
j=1

∞

|〈v,e j 〉|
2.

(One has to check that you are allowed to move the infinite sumout of the inner
product; this works by taking limits of finite sums.) In the case where you have an
orthonormal setbj that is not necessarily a basis, you getBessel’s inequality:

〈v,v〉 ≤ ∑
j

|〈v,bj 〉|
2.

Another (real or complex) Hilbert space fact that will be useful is the
Cauchy-Schwarz inequality:

|〈v,w〉| ≤ ‖v‖ ‖w‖.

This can be quite interesting when applying to various innerproducts. For example,
applying to theL2 inner product: iff is anL2 function, then

|〈f,1〉| = ∫
−π

π

fx dx , so

∫
−π

π

fx dx ≤ 2π ∫
−π

π

fx2 dx .

Similarly,

∫
−π

π

fxcosnx dx ≤ π ∫
−π

π

fx2 dx .

Fourier Series
The very specific application of the Hilbert space facts toL2S1 with basis either
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en = 1
2π

e inθ

n∈Z
or 1

2π
, 1

π
cosx, 1

π
sinx, 1

π
cos2x, 1

π
sin2x, . . .

yields the study of Fourier series.
The first fact is that any function inL2S1 can be represented by

f = ∑
n∈Z

cnen ,

where

cn = 〈f,en 〉 = 1
2π

∫
−π

π

fxexp−inx dx

is thenth Fourier coefficient. Furthermore, the Parseval identity shows that

∫
−π

π

fx2dx = ∑
n∈Z

|cn |2.

Similar results for the other basis are:

fx = a0 +∑
j=1

∞

aj cosjx +∑
k=1

∞

bj sinjx,

a0 = 1
2π ∫−π

π

fx dx, aj = 1
π ∫−π

π

fxcosjx dx for j ≥ 1,

bk = 1
π ∫−π

π

fxsinkx dx.

The Parseval identity is

∫
−π

π

fx2dx = 2π|a0|2 + π∑
j=1

∞

|aj |
2 + |bj |

2 .

The convergence of the Fourier series is with respect to the Hilbert space norm. For
example, this means for instance that for anyL2 functionf,

f − ∑
n=−N

N

cnen → 0

asN goes to infinity, with‖g‖ = ∫
−π

π
gx2dx . But it turns out that if we assume

additional conditions onf, other types of convergence are also manifested. Here are the
two important theorems:

Theorem Suppose that f ∈ L2S1 is piecewise C1(continuously differentiable) and
continuous. Then the Fourier series of f converges pointwise and uniformly to f.

The phrase “converges pointwise” means that for each fixedx ∈ −π,π, if
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FNx = a0 +∑
j=1

N

aj cosjx +∑
k=1

N

bj sinjx,

then lim
N→∞

FNx = fx. (Similarly for theen basis.). The phrase “converges uniformly”

means that given > 0, there existsM > 0 such that for allN ≥ M andall x ∈ −π,π,

|FNx − fx| < .

The next theorem deals with the case where there are jump discontinuities:

Theorem Suppose that f ∈ L2S1 is piecewise C1 and has a finite number of jump
discontinuities. Then the Fourier series of f converges to

f x = 1
2

lim
y→x−

fy + lim
y→x+

fy .

This theorem will be demonstrated in the examples. At all pointsx wheref is
continuous, note that the Fourier series converges tofx. Notice also that the word
“uniform” is removed from the conclusion. In fact, a very interesting situation occurs
when there is a point of discontinuity off, where the Fourier series converges to the
average of the left and right limits. As the numberN increases, there arex-values very
close to the point of discontinuity whereFNx differs fromfx by an amount that does
not decrease and in fact converges to the number

a0.08949. . .,

wherea is the gap between the left and right limits, and the number 0.08949. . . is
called the Wilbraham–Gibbs constant. The exact formula forthe constant is

1
π ∫0

π sinx
x dx − 1

2
.

This situation is called theGibbs Phenomenon. We will see this phenomenon in the
examples.

Examples and Applications

Square Wave
Define

fx =
−1 if − π ≤ x ≤ 0

1 if 0 ≤ x < π

We now compute the Fourier series:

5



a0 = 1
2π ∫−π

π

fx dx = 0,

aj = 1
π ∫−π

π

fx cosjx dx = 0 for j ≥ 1

bk = 1
π ∫−π

π

fx sinkx dx

= 1
π −∫

−π

0
sinkx dx + ∫

0

π

sinkx dx

= 1
π

1
k

coskx
−π

0
− 1

k
coskx

0

π

= 2
πk

1 − −1k =
4
πk

k odd

0 otherwise

Thus we have

fx = ∑
k odd

4
kπ

sinkx

= 4
π sinx + 1

3
sin3x +. . . .

Plugging inx = π
2 , we get

1 = 4
π 1 − 1

3
+ 1

5
−. . . ,or

π = 4 − 4
3

+ 4
5

−. . . .

(A famous formula forπ !) Next, consider Parseval’s Identity:

∫
−π

π

fx2 dx = π∑
k odd

4
kπ

2
, or

2π = 16
π 1 + 1

32 + 1
52 +. . . ,

or

1 + 1
32 + 1

52 +. . .= π2

8
.

(another famous formula!)
Let’s now graph the square wave with some of the Fourier approximations:
y = ∑

n=0
N 4

2n+1π
sin2n + 1x
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Note the Gibbs Phenomenon:
∑

n=0
N 4

2n+1π
sin 2n + 1 π

2N+1

∑
n=0
5 4

2n+1π
sin2n + 1 π

11  = 1. 17345830790194905

∑
n=0
20 4

2n+1π
sin2n + 1 π

41  = 1. 17858309426023996

∑
n=0
50 4

2n+1π
sin 2n + 1 π

101 = 1. 17891438974940976
0.17891438974940976

2 = 0.08945719487470488

Sawtooth Wave
Define

fx = x

for −π ≤ x < π and can be thought of as being periodic. We now compute the Fourier
series:

a0 = 1
2π ∫−π

π

x dx = 0,

aj = 1
π ∫−π

π

x cosjx dx = 0 for j ≥ 1

bk = 1
π ∫−π

π

x sinkx dx

= 1
π

1
k2 sinkx − 1

k
xcoskx

−π

π

= 1
π − −1kπ − −1k−π

k
=

2−1k+1

k

Then
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x = ∑
k=1

∞
2−1k+1

k
sinkx.

Plugging inx = π
2 , we get

π
2

= 2 1 − 1
3

+ 1
5

−. . . ,

which yields the formula forπ found in the previous section. Parseval’s identity yields:

∫
−π

π

x2 dx = π∑
k=1

∞
4
k2 , or

2π3

3
= 4π∑

k=1

∞
1
k2 ,

so that

∑
k=1

∞
1
k2 = 1

4π
2π3

3
= π2

6
.

(Another famous formula! )
We now plot the Fourier approximations to the saw tooth wave:
y = ∑

k=1
N 2−1k+1

k
sinkx
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Let’s check out the Gibbs Phenomenon:
y = ∑

k=1
N 2−1k+1

k
sin k Nπ

N+1

y = ∑
k=1
5 2−1k+1

k
sin k 5π

6 = 3. 16570477234332464

y = ∑
k=1
20 2−1k+1

k
sink 20π

21  = 3. 5530869812998034
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y = ∑
k=1
50 2−1k+1

k
sin k 50π

51 = 3. 64207293630163028

y = ∑
k=1
200 2−1k+1

k
sin k 200π

201 = 3. 68823132970234016
3. 68823132970234016− 200π

201 = 0.562268490309511067
0.562268490309511067

2π =.0894878095775761379
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