A real inner product on a real vector space V (which could be infinite dimensional) is a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ that satisfies the following properties:

- (Symmetry) $\langle v, w \rangle = \overline{\langle w, v \rangle}$ for all $v, w \in V$.
- (Linearity) $\langle av + bw, z \rangle = a \langle v, z \rangle + b \langle w, z \rangle$ for all $a, b \in \mathbb{R}$ and all $v, w, z \in V$.
- (Positivity) $\langle v, v \rangle \geq 0$ for all $v \in V$, with equality only if $v = 0$.

Similarly, a Hermitian (or complex) inner product on a complex vector space V (which could be infinite dimensional) is a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ that satisfies the following properties:

- (Symmetry) $\langle v, w \rangle = \overline{\langle w, v \rangle}$ for all $v, w \in V$. (Here, $\overline{\cdot}$ means the complex conjugate.)
- (Linearity) $\langle av + bw, z \rangle = a \langle v, z \rangle + b \langle w, z \rangle$ for all $a, b \in \mathbb{C}$ and all $v, w, z \in V$.
- (Positivity) $\langle v, v \rangle \geq 0$ for all $v \in V$, with equality only if $v = 0$.

A vector space $(V, \langle \cdot, \cdot \rangle)$ with real or complex inner product is called an inner product space.

A subset $\{e_1, e_2, \ldots\}$ of an inner product space V is called orthonormal if

$$\langle e_i, e_j \rangle = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

This set is called a basis (or complete orthonormal basis) if it spans V. The symbol δ_{ij} is called the Kronecker delta symbol.

Any inner product space $(V, \langle \cdot, \cdot \rangle)$ comes equipped with a norm $\|\cdot\| = \langle \cdot, \cdot \rangle^{1/2}$ called the inner product norm. From this one may make the vector space into a topological metric space using the distance function $d(v, w) = \|v - w\|$. We say that the inner product space is complete if all Cauchy sequences converge (with respect to that distance and norm). Equivalently, $(V, \langle \cdot, \cdot \rangle)$ is complete if

$$\sum_{k=0}^{\infty} \|v_k\| < \infty$$

implies always that $\sum_{k=0}^{\infty} v_k$ converges in V. A complete inner product space is called a Hilbert space. We say that a Hilbert space is separable if there exists a (countable) complete orthonormal basis. It turns out that all separable infinite-dimensional (real or complex) Hilbert spaces are isomorphic (say, to l^2; see below).

Important examples of Hilbert spaces are as follows:

- \mathbb{R}^n or \mathbb{C}^n with $\langle x, y \rangle = \sum_{j=1}^{n} x_j \overline{y_j}$.
- $l^2(\mathbb{R})$ or $l^2(\mathbb{C})$, which is the space of sequences $x = (x_1, x_2, \ldots)$ such that $\sum_{j=1}^{\infty} |x_j|^2 < \infty$ with inner product.
\[\langle x, y \rangle = \sum_{j=1}^{\infty} x_j \overline{y_j}. \]

Then \(\{(1,0,0,\ldots),(0,1,0,0,\ldots),(0,0,1,0,0,\ldots),\ldots\} \) is a complete orthonormal basis of \(\ell^2(\mathbb{R}) \) (or \(\ell^2(\mathbb{C}) \)).

- \(L^2(S^1) \), the space of square-integrable functions on the unit circle. We have:

\[
L^2(S^1) = \left\{ f : S^1 \rightarrow \mathbb{C} : \int_{S^1} |f|^2 < \infty \right\}
= \left\{ g : \mathbb{R} \rightarrow \mathbb{C} : \int_0^{2\pi} |g(x)|^2 \, dx < \infty \text{ and } g(x+2\pi) = g(x) \right\}
\]

with inner product

\[
\langle f, g \rangle = \int_{-\pi}^{\pi} f(x) \overline{g(x)} \, dx.
\]

One can check that the product given above satisfies the definition of Hermitian inner product. One technical detail is that you have to say that two functions in \(L^2(S^1) \) are considered to be the same if they are equal except on a set of measure zero. We have to do this, because otherwise the positivity property would not be satisfied.

An example of an orthogonal set in \(L^2(S^1) \) is \(\{1, \cos(x), \sin(x), \cos(2x), \sin(2x), \ldots\} \). We can verify that

\[
\int_{-\pi}^{\pi} 1 \cdot \cos nx \, dx = \int_{-\pi}^{\pi} 1 \cdot \sin nx \, dx = 0 \text{ if } n \in \mathbb{Z},
\]

\[
\int_{-\pi}^{\pi} \sin mx \cdot \cos nx \, dx = 0 \text{ for } n, m \in \mathbb{Z}
\]

\[
\int_{-\pi}^{\pi} \cos mx \cdot \cos nx \, dx = \int_{-\pi}^{\pi} \sin mx \cdot \sin nx \, dx = \left\{ \begin{array}{ll} 0 & \text{if } n \neq m \\ \pi & \text{if } n = m \in \mathbb{N} \end{array} \right.
\]

\[
\int_{-\pi}^{\pi} 1 \, dx = 2\pi.
\]

Then

\[
\left\{ \frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}} \cos(x), \frac{1}{\sqrt{\pi}} \sin(x), \frac{1}{\sqrt{\pi}} \cos(2x), \frac{1}{\sqrt{\pi}} \sin(2x), \ldots \right\}
\]

is an orthonormal set in \(L^2(S^1) \). By a very deep and difficult theorem, this set is a complete orthonormal basis. The hard part (and only remaining part) is to show that it spans \(L^2(S^1) \). This is equivalent to showing that if \(h(x) \) is in \(L^2(S^1) \) such that \(\langle h, \alpha \rangle = 0 \) for every element \(\alpha \) in the orthonormal set, then \(h(x) = 0 \) in \(L^2(S^1) \). Another commonly used orthonormal basis for \(L^2(S^1) \) is \(\left\{ \frac{1}{\sqrt{2\pi}} e^{i n \theta} \right\}_{n \in \mathbb{Z}} \).

Note that given any orthonormal basis \(\{e_1, e_2, \ldots\} \) of a Hilbert space \(V \) and any vector \(v \in V \),
that is the sum on the right converges to v (using the inner product norm). Note that $\langle v, e_j \rangle e_j$ is the projection of v onto e_j. Sometimes the number $\langle v, e_j \rangle$ is called the j^{th} Fourier coefficient. We can take the L^2 norm of both sides of the equation to get Parseval’s equality (or Parseval Identity):

\[
\langle v, v \rangle = \sum_{j=1}^{\infty} (\langle v, e_j \rangle e_j, \sum_{k=1}^{\infty} \langle v, e_k \rangle e_k) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \langle v, e_j \rangle \langle v, e_k \rangle \langle e_j, e_k \rangle = \sum_{j=1}^{\infty} |\langle v, e_j \rangle|^2.
\]

(One has to check that you are allowed to move the infinite sum out of the inner product; this works by taking limits of finite sums.) In the case where you have an orthonormal set $\{b_j\}$ that is not necessarily a basis, you get Bessel’s inequality:

\[
\langle v, v \rangle \leq \sum_{j} |\langle v, b_j \rangle|^2.
\]

Another (real or complex) Hilbert space fact that will be useful is the Cauchy-Schwarz inequality:

\[
|\langle v, w \rangle| \leq \|v\| \|w\|.
\]

This can be quite interesting when applying to various inner products. For example, applying to the L^2 inner product: if f is an L^2 function, then

\[
|\langle f, 1 \rangle| = \left| \int_{-\pi}^{\pi} f(x) \, dx \right|, \text{ so } \left| \int_{-\pi}^{\pi} f(x) \, dx \right| \leq 2\pi \sqrt{\int_{-\pi}^{\pi} (f(x))^2 \, dx}.
\]

Similarly,

\[
\left| \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx \right| \leq \sqrt{\pi} \sqrt{\int_{-\pi}^{\pi} (f(x))^2 \, dx}.
\]

Fourier Series

The very specific application of the Hilbert space facts to $L^2(S^1)$ with basis either
\[
\left\{ e_n = \frac{1}{\sqrt{2\pi}} e^{in\theta} \right\}_{n \in \mathbb{Z}} \quad \text{or} \quad \left\{ \frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{2\pi}} \cos(x), \frac{1}{\sqrt{2\pi}} \sin(x), \frac{1}{\sqrt{2\pi}} \cos(2x), \frac{1}{\sqrt{2\pi}} \sin(2x), \ldots \right\}
\]

yields the study of Fourier series.

The first fact is that any function in \(L^2(S^1) \) can be represented by

\[
f = \sum_{n \in \mathbb{Z}} c_n e_n,
\]

where

\[
c_n = \langle f, e_n \rangle = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x) \exp(-inx) \, dx
\]
is the \(n \)th Fourier coefficient. Furthermore, the Parseval identity shows that

\[
\int_{-\pi}^{\pi} (f(x))^2 \, dx = \sum_{n \in \mathbb{Z}} |c_n|^2.
\]

Similar results for the other basis are:

\[
f(x) = a_0 + \sum_{j=1}^{\infty} a_j \cos(jx) + \sum_{k=1}^{\infty} b_j \sin(jx),
\]

\[
a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx, \quad a_j = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(jx) \, dx \quad \text{for } j \geq 1,
\]

\[
b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) \, dx.
\]

The Parseval identity is

\[
\int_{-\pi}^{\pi} (f(x))^2 \, dx = 2\pi |a_0|^2 + \pi \sum_{j=1}^{\infty} (|a_j|^2 + |b_j|^2).
\]

The convergence of the Fourier series is with respect to the Hilbert space norm. For example, this means for instance that for any \(L^2 \) function \(f \),

\[
\left\| f - \sum_{n=-N}^{N} c_n e_n \right\| \to 0
\]
as \(N \) goes to infinity, with \(\|g\| = \sqrt{\int_{-\pi}^{\pi} (g(x))^2 \, dx} \). But it turns out that if we assume additional conditions on \(f \), other types of convergence are also manifested. Here are the two important theorems:

Theorem Suppose that \(f \in L^2(S^1) \) is piecewise \(C^1 \) (continuously differentiable) and continuous. Then the Fourier series of \(f \) converges pointwise and uniformly to \(f \).

The phrase “converges pointwise” means that for each fixed \(x \in [-\pi, \pi] \), if
\[F_N(x) = a_0 + \sum_{j=1}^{N} a_j \cos(jx) + \sum_{k=1}^{N} b_j \sin(jx), \]

then \(\lim_{N \to \infty} F_N(x) = f(x) \). (Similarly for the \(e_n \) basis.). The phrase “converges uniformly” means that given \(\varepsilon > 0 \), there exists \(M > 0 \) such that for all \(N \geq M \) and all \(x \in [-\pi, \pi] \),

\[|F_N(x) - f(x)| < \varepsilon. \]

The next theorem deals with the case where there are jump discontinuities:

Theorem Suppose that \(f \in L^2(S^1) \) is piecewise \(C^1 \) and has a finite number of jump discontinuities. Then the Fourier series of \(f \) converges to

\[\overline{f}(x) = \frac{1}{2} \left(\lim_{y \to x^-} f(y) + \lim_{y \to x^+} f(y) \right). \]

This theorem will be demonstrated in the examples. At all points \(x \) where \(f \) is continuous, note that the Fourier series converges to \(f(x) \). Notice also that the word “uniform” is removed from the conclusion. In fact, a very interesting situation occurs when there is a point of discontinuity of \(f \), where the Fourier series converges to the average of the left and right limits. As the number \(N \) increases, there are \(x \)-values very close to the point of discontinuity where \(F_N(x) \) differs from \(f(x) \) by an amount that does not decrease and in fact converges to the number

\[a(0.08949\ldots), \]

where \(a \) is the gap between the left and right limits, and the number 0.08949\ldots is called the Wilbraham–Gibbs constant. The exact formula for the constant is

\[\frac{1}{\pi} \int_{0}^{\pi} \frac{\sin(x)}{x} \, dx - \frac{1}{2}. \]

This situation is called the **Gibbs Phenomenon**. We will see this phenomenon in the examples.

Examples and Applications

Square Wave

Define

\[f(x) = \begin{cases}
-1 & \text{if } -\pi \leq x \leq 0 \\
1 & \text{if } 0 \leq x < \pi
\end{cases} \]

We now compute the Fourier series:
\[a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx = 0, \]
\[a_j = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(jx) \, dx = 0 \text{ for } j \geq 1 \]
\[b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) \, dx \]
\[= \frac{1}{\pi} \left(-\int_{-\pi}^{0} \sin(kx) \, dx + \int_{0}^{\pi} \sin(kx) \, dx \right) \]
\[= \frac{1}{\pi} \left(\frac{1}{k} \cos(kx) \bigg|_{-\pi}^{0} - \frac{1}{k} \cos(kx) \bigg|_{0}^{\pi} \right) \]
\[= \frac{2}{\pi k} (1 - (-1)^k) = \begin{cases} \frac{4}{\pi k} & k \text{ odd} \\ 0 & \text{otherwise} \end{cases} \]

Thus we have
\[f(x) = \sum_{k \text{ odd}} \frac{4}{k\pi} \sin(kx) \]
\[= \frac{4}{\pi} \left(\sin(x) + \frac{1}{3} \sin(3x) + \ldots \right). \]

Plugging in \(x = \frac{\pi}{2} \), we get
\[1 = \frac{4}{\pi} \left(1 - \frac{1}{3} + \frac{1}{5} - \ldots \right), \text{ or} \]
\[\pi = \left(4 - \frac{4}{3} + \frac{4}{5} - \ldots \right). \]

(A famous formula for \(\pi \)!) Next, consider Parseval’s Identity:
\[\int_{-\pi}^{\pi} (f(x))^2 \, dx = \pi \sum_{k \text{ odd}} \left(\frac{4}{k\pi} \right)^2, \text{ or} \]
\[2\pi = \frac{16}{\pi} \left(1 + \frac{1}{3^2} + \frac{1}{5^2} + \ldots \right), \]
or
\[1 + \frac{1}{3^2} + \frac{1}{5^2} + \ldots = \frac{\pi^2}{8}. \]

(another famous formula!)

Let’s now graph the square wave with some of the Fourier approximations:
\[y = \sum_{n=0}^{N} \frac{4}{(2n+1)\pi} \sin((2n+1)x) \]
Note the Gibbs Phenomenon:
\[
\sum_{n=0}^{N} \frac{4}{(2n+1)\pi} \sin \left((2n + 1) \left(\frac{\pi}{2N+1} \right) \right)
\]
\[
\sum_{n=0}^{5} \frac{4}{(2n+1)\pi} \sin \left((2n + 1) \left(\frac{\pi}{11} \right) \right) = 1.17345830790194905
\]
\[
\sum_{n=0}^{20} \frac{4}{(2n+1)\pi} \sin \left((2n + 1) \left(\frac{\pi}{41} \right) \right) = 1.17858309426023996
\]
\[
\sum_{n=0}^{50} \frac{4}{(2n+1)\pi} \sin \left((2n + 1) \left(\frac{\pi}{101} \right) \right) = 1.17891438974940976
\]
\[
\frac{4}{0.17891438974940976} = 0.08945719487470488
\]

Sawtooth Wave

Define
\[f(x) = x\]
for \(-\pi \leq x < \pi\) and can be thought of as being periodic. We now compute the Fourier series:
\[
a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x \, dx = 0,
\]
\[
a_j = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos(jx) \, dx = 0 \text{ for } j \geq 1
\]
\[
b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(kx) \, dx
\]
\[
= \frac{1}{\pi} \left(\frac{1}{k^2} \sin(kx) - \frac{1}{k} x \cos(kx) \right]_{-\pi}^{\pi}
\]
\[
= \frac{1}{\pi} \left(-(-1)^k \pi - (-1)^k (-\pi) \right) = \frac{2(-1)^{k+1}}{k}
\]

Then
\[x = \sum_{k=1}^{\infty} \frac{2(-1)^{k+1}}{k} \sin(kx). \]

Plugging in \(x = \frac{\pi}{2} \), we get
\[\frac{\pi}{2} = 2 \left(1 - \frac{1}{3} + \frac{1}{5} - \ldots \right), \]
which yields the formula for \(\pi \) found in the previous section. Parseval’s identity yields:
\[\int_{-\pi}^{\pi} x^2 \, dx = \pi \sum_{k=1}^{\infty} \frac{4}{k^2}, \text{ or} \]
\[\frac{2\pi^3}{3} = 4\pi \sum_{k=1}^{\infty} \frac{1}{k^2}, \]
so that
\[\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{1}{4\pi} \frac{2\pi^3}{3} = \frac{\pi^2}{6}. \]
(Another famous formula!)

We now plot the Fourier approximations to the saw tooth wave:
\[y = \sum_{k=1}^{N} \frac{2(-1)^{k+1}}{k} \sin(kx) \]

Let’s check out the Gibbs Phenomenon:
\[y = \sum_{k=1}^{5} \frac{2(-1)^{k+1}}{k} \sin(k \left(\frac{N\pi}{N+1} \right)) = 2.16570477234332464 \]
\[y = \sum_{k=1}^{20} \frac{2(-1)^{k+1}}{k} \sin(k \left(\frac{5\pi}{6} \right)) = 3. 16570477234332464 \]
\[y = \sum_{k=1}^{5} \frac{2(-1)^{k+1}}{k} \sin(k \left(\frac{20\pi}{21} \right)) = 3. 5530869812998034 \]
\[y = \sum_{k=1}^{50} \frac{2(-1)^{k+1}}{k} \sin \left(k \left(\frac{50\pi}{51} \right) \right) = 3.64207293630163028 \]

\[y = \sum_{k=1}^{200} \frac{2(-1)^{k+1}}{k} \sin \left(k \left(\frac{200\pi}{201} \right) \right) = 3.68823132970234016 \]

\[
3.68823132970234016 - \frac{0.562268490309511067}{0.562268490309511067} = 0.562268490309511067
\]