Introduction to Fourier series
by Ken Richardson

Hilbert spaces

A real inner product on a real vector spadé (which could be infinite

dimensional) is a mapﬁ- : -> - VxV - R that satisfies the following properties:
® (Symmetry) (v,w) = (w,v) forallv,w e V.
® (Linearity) (av+bw,z) = a(v,z) + b{w, z) for alla,b € R and allv,w,ze V.
® (Positivity) (v,v) > 0 for allv € V, with equality only ifv = 0 .

Similarly, aHermitian (or complex) inner product on a complex vector spaté
(which could be infinite dimensional) is a ma(p : -> : VxV - Cthat satisfies the
following properties:

@ (Symmetry) (v,w) = (w,V) for all v,w € V. (Here, Z means the complex conjugate.)
® (Linearity)(av+bw,z) = alv,z) + b{w, z) for alla,b € Cand allv,w,ze V.
® (Positivity) (v,v) > 0 for allv € V, with equality only ifv = 0 .

A vector spacé€V, (s, ¢)) with real or complex inner product is called amer
product space.

A subset{es, ez, ...} of an inner product spadéis calledorthonormal if

1 ifi=|j
e,g) =dij =
&) = 9 {o ifi - |

This set is called &asis (or complete orthonormal basis) if it spansV. The symbob;;
is called theKronecker delta symbol.

Any inner product spac@/,(s,)) comes equipped with a norfia|| = (e,e)
called the inner product norm. From this one may make theovepace into a
topological metric space using the distance funcdonw) = ||v—w||. We say that the
inner product space ompleteif all Cauchy sequences converge (with respect to that
distance and norm). Equivalentl§/, (e, *)) is complete if

o0
D vkl < o0
k=0

implies always thaEf:O Vi converges in/. A complete inner product space is called a
Hilbert space. We say that a Hilbert spacessgpar able if there exists a (countable)
complete orthonormal basis. It turns out that all separibieite-dimensional (real or
complex) Hilbert spaces are isomorphic (saytpsee below).
Importantexamples of Hilbert spaces are as follows:

® R"orC"with (xy) = 37" %7 .

® (?(R) or(?(C), which is the space of sequences (xi,Xz,...) such thatZJf‘il|x,-|2 < o
with inner product
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(XY) = DX -
=1
Then{(1,0,0,..),(0,1,0,0,..),(0,0,1,0,0,..),...} is a complete orthonormal basis of
02(R) (or (3(C)).
L2(S'), the space of square-integrable functions on the uniteciktle have:

L2(S!) = {f 1S Cx [P < oo}
Sl

2r
_ {g ‘R C: jo 900 dx < w0 andg(x + 27) = g(x)}
with inner product
(f.) = | 100960 dx.

One can check that the product given above satisfies theitiefi of Hermitian inner
product. One technical detail is that you have to say thatftmotions inL?(S') are
considered to be the same if they are equal except on a setasiungezero. We have to do
this, because otherwise the positivity property would reosatisfied.

An example of an orthogonal setlif(S!) is
{1, cogx), sin(x), cog2x), sin(2x), ... . We can verify that

r 1-cosnxdx=jn l.sinnxdx=0ifne Z,
Jw sinmx - cosnxdx = 0 fornm e Z

r T , 0 ifn=+m
I cosmx-cosnxdx=_[ sinmx - sinnx dx = .
- - 7 ifn=meN

If ldx = 2r.

Then

1 _1 1 g 1 1 g
{JZ_’ ir cogx), 77 sin(x), ir cog2x), ﬁsm(2x),...}

is an orthonormal set ih?(S'). By a very deep and difficult theorem, this set is a
complete orthonormal basis. The hard part (and only remgipart) is to show is that
it spansL?(Sh). This is equivalent to showing thathifx) is in L2(S') such that

(h,a) = 0O for every element in the orthonormal set, ther(x) = 0 in L?(S'). Another

commonly used orthonormal basis fo#(S') is {#e‘m :
Vo neZ

Note that given any orthonormal bagis;, ez, ...} of a Hilbert spac&/ and any
vectorv € V,



0

V= (vee,

=1

that is the sum on the right convergessntfusing the inner product norm). Note that
(v, €)g; is the projection ofr ontog;. Sometimes the numbeév, g) is called thg™
Fourier coefficient. We can take th&2 norm of both sides of the equation to get
Parseval’s equality (or Parseval |dentity):

v,v) = <Z<v, &g, D (v ek>ek>

=1 k=1

M+ =M

D vV, ex)e, &)

k=1

kv, &) .

]

Il
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(One has to check that you are allowed to move the infinite gutof the inner
product; this works by taking limits of finite sums.) In thase where you have an
orthonormal setb; } that is not necessarily a basis, you Bessel’ sinequality:

(Vv) < D Kbyl
i
Another (real or complex) Hilbert space fact that will be fuses the
Cauchy-Schwar z inequality:
Kv,wil < [IvI lw.

This can be quite interesting when applying to various inpreducts. For example,
applying to thel.?2 inner product: iff is anL? function, then

F, 1] = U £(x) dx‘, S0

U:f(x) dx‘ <Jn /_[;(f(x))zdx.

Uf f(x) cognx) dx‘ < Jr K (f(x))? dx.

Similarly,

Fourier Series

The very specific application of the Hilbert space facts #¢S') with basis either



{en = J;_ﬁ e'”"}nez or { o Jl_ cogX), sm(x) cos(2x) sm(2x) }

yields the study of Fourier series.
The first fact is that any function ib?(St) can be represented by

f=>"coen,

neZ

where

cn = (f,en) = J”_r f(x) exp(—inx) dx

1
J2r
is then'™ Fourier coefficient. Furthermore, the Parseval identityvss that

| 00 = Yjel.
neZ
Similar results for the other basis are:
f(x) = ap + Z aj cogjx) + Z b sin(jx),
=1

ao = % .[_,, f(x) dx, a = % .[_,, f(x) cog(jx) dx forj > 1,

bk = % _r_r f(x) sin(kx) dx.

The Parseval identity is
f” (F00)2clx = 2xfaol® + 7 > (& [ + Iy 7).
r =

The convergence of the Fourier series is with respect to thet space norm. For
example, this means for instance that for &dyfunctionf,

N
f— " coen
n=—N

asN goes to infinity, with||g|| = H:T(g(x))zdx. But it turns out that if we assume

additional conditions ofy other types of convergence are also manifested. Here are th
two important theorems:

Theorem Supposethat f e L?(St) is piecewise Ct(continuously differentiable) and
continuous. Then the Fourier series of f converges pointwise and uniformly to f.

The phrase “converges pointwise” means that for each fxxed—-=, 7], if

-0




N N

Fn(X) = ao + Z aj cogjx) + Z b; sin(jx),
=1 k=1

thenl\llimFN(x) = f(x). (Similarly for thee, basis.). The phrase “converges uniformly”

means that given > 0, there exist®1 > 0 such that for aIN > M andall x € [-x, 7],

IFn(x) — f(X)] < e.

The next theorem deals with the case where there are jumpndisaities:

Theorem Supposethatf e L?(S!) ispiecewise C! and has a finite number of jump
discontinuities. Then the Fourier series of f convergesto

00 = $(fimtw) + Imfe) )

This theorem will be demonstrated in the examples. At alhisoi wheref is
continuous, note that the Fourier series convergésgoNotice also that the word
“uniform” is removed from the conclusion. In fact, a veryangsting situation occurs
when there is a point of discontinuity §fwhere the Fourier series converges to the
average of the left and right limits. As the numibémcreases, there arevalues very
close to the point of discontinuity wheFg(x) differs fromf(x) by an amount that does
not decrease and in fact converges to the number

a(0.08949. .),

wherea is the gap between the left and right limits, and the numb@8®49. .. is
called the Wilbraham-Gibbs constant. The exact formuldhferconstant is
1 (™ sinx) 1
a J.O dx —

X 2

This situation is called th&ibbs Phenomenon. We will see this phenomenon in the
examples.

Examples and Applications

Square Wave
Define

-1 if -7 <x<
f(X){ I T<xXx<0

1 if0<x<nr

We now compute the Fourier series:



2
% J':r f(x) cogjx) dx = O forj > 1

aozi_‘”r fx)dx=10

g

by

1] "ﬂ f(x) sin(kx) dx

% (—J: sin(kx) dx + IZ sin(kx) dx)
(oo - o]
2 kodd

2 k 7k
”k< > { 0 otherwise

Thus we have

o)=Y % sin(kx)

k odd

4 (sin(x) + % Sin(3x) +.. )

Plugging inx = Z-, we get
_4(,_1 1 _
l—n(l 3tE5 - ),or
+

+ L
7[—(4 4 ‘51 )

(A famous formula forr ') Next, consider Parseval’s Identity:

I”ﬂ(f(x))z dx = 7 Z(é)z, or

kodd

_ 16 1 1
2n = (1+3 ?+)

or

(another famous formulal!)
Let’s now graph the square wave with some of the Fourier aqimations:

Y = X o e Sin((2n + 1)x)



y 15T

1.257

0.757

Note the Gibbs Phenomenon:

> oo T
n=0 (2n+1)7r

sin((2n+ 1) (&

2N+1

)

5
>, (2n+1) sin((2n+ 1)(&)) = 1. 173458307901 94905

220
n=0 (2n+1)

>
n=0 (2n+1

0.178914 389 749 40976_

2

Sawtooth Wave
Define

for —n < x < 7 and can be thought of as being periodic. We now compute thadfou

series:
ao
g

by

Then

:\lp :\lp =1||a )

\.-\

'—;
3

f(x) = x

Q_

X = 0,

x cogjx)dx =0forj>1

X sin(kx) dx

sin((2n+ 1)(&%)) = 1. 178583094 26023996
sin((2n+1)(&;)) = 1.17891438974940976
0.089457194874704 88

)

2(_1)k+1

T
[
(s
-#(-

~1)“% - (1)(7t)>:

k




k+1

= i sin(kx).
k=1

Plugging inx = 7, we get

z :2(1—%+%—...),

which yields the formula for found in the previous section. Parseval’s identity yields:

k=1
213 _ - 1
3 —47tk2=; Kz

so that

(Another famous formula! )
We now plot the Fourier approximations to the saw tooth wave:

y =3 2D singke)

Let's check out the Gibbs Phenomenon:

y= Zk 1 2= l) - Sm<k< N+1 ))

y = Zk ) 2 1) K sm(k( ) = 3.16570477234332464
220 2 1> S.n(k( )) = 3.5530869812998034




y =% 2D sin(k(32 ) = 3.64207293630163028

k=1 k
y = 3290 2D gin(i (2% ) 3, 68823132970234016

3. 688231329702 340 ]:6% = 0.562268490309511067

0.562268490309511067_. 08948780957 75761379




