
TOEPLITZ OPERATORS

EFTON PARK

1. Introduction to Toeplitz Operators

Otto Toeplitz lived from 1881-1940 in Goettingen, and it was pretty rough there, so he
eventually went to Palestine and eventually contracted tuberculosis and died. He developed
this theory when common operator theory notions were very new.

Toeplitz studied infinite matrices with NW-SE diagonals constant.
a0 a−1 a−2 a−3 ...
a1 a0 a−1 a−2 ...
a2 a1 a0 a−1 ...
...

...
...

...
. . .


Modern formulation: Let S1 be the unit circle in C.

L2
(
S1
)

=

{
f : S1 → C :

1

2π

∫ 2π

0

∣∣f (eiθ)∣∣2 dθ <∞}
The set

{
einθ : n ∈ Z

}
is an orthonormal basis with respect to the L2 inner product. Given

φ ∈ L∞ (S1), define Mφ : L2 (S1) :→ L2 (S1) by Mφf = φf .

Easy results:

(1) M∗
φ = Mφ;

(2) Mφ+ψ = Mφ +Mψ;

(3) MφMψ = Mφψ;

(4) Mφ is invertible iff φ ∈ L∞ (S1) is invertible.

Hardy space:

H2 = H2
(
S1
)

= Hilbert subspace of L2(S1) spanned by
{
einθ : n ≥ 0

}
= set of elements of L2

(
S1
)

that have an analytic extension to D = {z ∈ C : |z| < 1} .

Let P : L2 (S1)→ H2 be the orthogonal projection:

P

(∑
n∈Z

cne
inθ

)
=
∞∑
n=0

cne
inθ.

For each φ in L∞(S1), define the Toeplitz operator Tφ : H2 → H2 by the formula Tφ = PMφ.

Question: What is the matrix for Tφ with respect to the orthonormal basis {einθ : n ≥ 0}?
1
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amn =
〈
Tφe

inθ, eimθ
〉

=
〈
PMφe

inθ, eimθ
〉

=
〈
Mφe

inθ, P eimθ
〉

=
〈
Mφe

inθ, eimθ
〉

=
1

2π

∫ 2π

0

φ
(
eiθ
)
einθe−imθdθ

=
1

2π

∫ 2π

0

φ
(
eiθ
)
ei(n−m)θdθ

= φ̂ (n−m) ,

so (amn) is the same type of matrix that Toeplitz studied.

The function φ is called the symbol of Tφ.

Question: How do operator-theoretic properties of Tφ relate to function-theoretic properties
of φ?

Answer: It’s complicated.

Easy results:

(1) T ∗φ = Tφ.

(2) Tφ+ψ = Tφ + Tψ

(3) Tφψ 6= TφTψ in general

(4) Tφ invertible implies that φ is invertible.

In general, the converse to this last statement is false.

Example 1.1. Tz = Teiθ . Then Tz (zn) = zn+1 for n ≥ 0. So 1 = z0 /∈range(Tz), so Tz is
not invertible. The operator Tz is the unilateral shift operator.

From now on, we only consider continuous symbols.

2. Fredholm operators and the index

Let H be an infinite dimensional complex Hilbert space. Let S : H → H be a linear map,
and define

‖S‖ = sup

{
‖Sv‖
‖v‖

: v 6= 0

}
.

Define B (H) = {S : H → H linear such that ‖S‖ <∞}. It is easy to show that B (H) is an
algebra under addition and composition.

Let F be the set of finite rank operators on H; i.e. the set of bounded operators on H that
have finite-dimensional range. The set F is an ideal in B (H).

Let K = F . This is the ideal of compact operators.

Alternate definition: K is compact iff the image of the unit ball in H is compact (in the
norm topology).
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Remark: if H is separable, then K is the only topologically closed nontrivial proper ideal
in B (H). The quotient B(H)/K is called the Calkin algebra, and the obvious function
π : B (H)→ B (H) /K is a quotient map in both the algebraic and topological senses.

If S ∈ B (H) is invertible modulo K (H) (i.e., π (S) is invertible in B (H) /K ), we say S is a
Fredholm operator.

Theorem 2.1. (Atkinson’s Theorem) S is Fredholm iff

(1) ker S is finite dimensional

(2) ker S∗ is finite dimensional

(3) ran S is (topologically) closed.

If S is Fredholm, we define its index to be indexS = dim kerS − dim kerS∗.

Properties of index:

(1) If {St} is a path of Fredholm operators, then indexS0 = indexS1. [Note dim kerSt
and dim kerS∗t may change as a function of t.] In fact, the converse is also true.

(2) index (S +K) = indexS for all K compact.

(3) index (RS) = indexR + indexS.

Questions: Which Toeplitz operators are Fredholm? If Tφ is Fredholm, can we compute its
index from its symbol φ?

Proposition 2.2. If φ and ψ are in C(S1), then TφTψ − Tφψ is compact.

Idea of proof: For all integers m and n, the operator TznTzm−Tznzm is a finite rank operator.

Example: Look at Tz2Tz−3 − Tz2z−3 . For k ≥ 0,

Tz2z−3(zk) = Tz−1(zk) =

{
0 k = 0

zk−1 k ≥ 1

and

(Tz2Tz−3)(zk) =

{
0 k < 3

Tz2(z
k−3) k ≥ 3

=

{
0 k < 3

zk−1 k ≥ 3
.

Thus

(Tz2Tz−3 − Tz2z−3)(zk) =

{
0 k = 0, 3, 4, 5, . . .

−zk−1 k = 1, 2
,

whence Tz2Tz−3 − Tz2z−3 has rank 2.

Back to idea of proof: If φ and ψ are Laurent polynomials, then TφTψ−Tφψ is finite rank, and
an approximation argument then shows that TφTψ − Tφψ is compact for general continuous
φ and ψ.

The Toeplitz algebra is T = {Tφ +K : φ ∈ C(S1), K ∈ K}.
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Remark: T is the universal C∗-algebra generated by a non unitary isometry (Coburn’s
Theorem).

Theorem 2.3. There exists a short exact sequence

0 −→ K −→ T −→ C(S1) −→ 0,

where the map σ : T −→ C(S1) is defined by σ(Tφ +K) = φ.

Remark: We also have a linear splitting ξ : C(S1) −→ T given by ξ(φ) = Tφ, but ξ is not
multiplicative.

Corollary 2.4. An element T of the Toeplitz algebra is Fredholm if and only if its symbol
σ(T ) is invertible; i.e., nowhere vanishing on the circle.

Theorem 2.5. If T in T is Fredholm, then

IndexT = −(winding number of σ(T )) = − 1

2π

∫ 2π

0

dσ(T )

σ(T )
.

Proof: Because of Property (2) of the index, we need only prove the result for honest Toeplitz
operators Tφ with φ nowhere vanishing on the circle. Next, every nonvanishing function on S1

can be homotoped to zn for some n, so by Property (1) of the index and homotopy invariance
of winding number, it is enough to prove the theorem for Toeplitz operators Tzn . And because
of Property (3) of the index (along with the obvious property Index(S∗) = − IndexS for all
Fredholm operators S) and the algebraic properties of winding number, it suffices to establish
the result for Tz. As we saw earlier, Tz is injective, so dim kerTz = 0. It is easy to show that
the kernel of T ∗z = Tz−1 is spanned by the constant function 1, and hence dim kerT ∗z = 1.
Therefore

IndexTz = 0− 1 = −1 = −(winding number of z).

If S in B(H) is invertible, then S∗ is also invertible, whence S is a Fredholm operator of
index 0. The converse of this result is not generally true, but surprisingly it is for Toeplitz
operators (but not for arbitrary elements of T ).

Lemma 2.6 (F. and M. Riesz). If f ∈ H2 is not the zero function, then f in nonzero almost
everywhere.

Proposition 2.7 (Coburn). Suppose φ ∈ C(S1) is nowhere vanishing. Then either kerTφ =
{0} or kerT ∗φ = {0}.

Proof: Suppose there exist f and g are nonzero functions (a.e.) such that Tφf = 0 and

Tφg = 0. Then P (φf) = 0 and P (φg) = 0, whence φf and φg are in H2. Therefore φfg

and φfg = φfg are in H1, which implies that φfg equals a real constant almost everywhere.
But, note that (surprisingly!)

1

2π

∫
φfg =

(
1

2π

∫
f

)(
1

2π

∫
φg

)
= 0,

so φfg is zero a.e., a contradiction.



TOEPLITZ OPERATORS 5

Corollary 2.8. Tφ is invertible if and only if φ is nowhere vanishing and IndexTφ = 0.

Warning: If Tφ is invertible, it is not generally true that (Tφ)−1 = Tφ−1 .

3. Generalizations

Easy generalization: Suppose Φ is in M(n,C(S1)). Then we have a matrix multiplication
operator

MΦ :
(
L2(S1)

)n −→ (
L2(S1)

)n
, MΦ(F ) = ΦF

and Toeplitz operator

TΦ :
(
H2
)n −→ (

H2
)n
, TΦ(F ) = PMΦ,

where P : (L2(S1))
n −→ (H2)

n
is the obvious map.

There exists a short exact sequence

0 −→ K⊗M(n,C) −→ T ⊗M(n,C) −→ C(S1)⊗M(n,C) −→ 0,

or

0 −→ M(n,K) −→ M(n, T ) −→ M(n,C(S1)) −→ 0.

Theorem 3.1. TΦ is Fredholm if and only if Φ(z) is invertible for every z in S1, and in this
case, the index of TΦ equals the negative of the winding number of det Φ.

Remark: In this generality, it is not true that IndexTΦ = 0 implies that TΦ is invertible.

Back to scalar (non-matrix) case for a minute. Consider D = 1
i
d
dθ

as an (unbounded)

differential operator on L2(S1). The functions einθ for a complete set of eigenvectors for D:
D(einθ) = neinθ. Note that P is the projection onto the span of the eigenspaces associated
to nonnegative eigenvalues of D; in other words, P is the positive spectral projection of D.

Crazy generalization:

Let X be a topological space. A complex vector space is a topological space E and a
continuous surjection p : E −→ X such that for each x in X there is a neighborhood U such
that p−1(U) ∼= U × Cn for some natural number n. The set Ex = p−1(x) is called the fiber
of E over x.

A section of E is a continuous function s : X −→ E with the property that s(x) ∈ Ex
for each x in X, or, in other words, p(s(x)) = x for all x in X. We call E a Hermitian
vector bundle if each Ex has a complex inner product on it and these inner products vary
continuously.

Now suppose X is a smooth manifold and that E is a smooth Hermitian vector bundle
over X. Let D be a self-adjoint elliptic differential operator acting on sections of a smooth
Hermitian complex vector bundle E over a smooth manifold X; “elliptic” roughly means
that D differentiates in all directions.
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Given φ in C(X), we have a multiplication operator Mφ : L2(X,E) −→ L2(X,E) and
a Toeplitz operator Tφ = PMφ, where P is the positive spectral projection of D. More
generally, we can form Toeplitz operators with matrix-valued symbols.

Theorem 3.2 (Baum-Douglas). [Odd Atiyah-Singer Index Theorem] TΦ is Fredholm if and
only if Φ is in GL(n,C(M)), and in this case there is a formula for the index involving F ,
topological invariants of M and E, and the principal symbol of D.

Remark 1: In general we only get nonzero indices here if M is odd-dimensional.

Remark 2: The formula mentioned in the theorem can be expressed as an integral over M ,
with one factor in the integrand being the Chern character of Φ:

ch(Φ) =
∞∑
n=0

(−1)k
k!

(2k + 1)!
tr
(
Φ−1 dΦ

)2k+1

Note that the integrand in the winding number formula is one term in this sum.

4. Traces, Determinants, and Toeplitz Operators

Given a finite matrix with complex entries, we can compute its trace and determinant in
terms of those entries, and we know that these numbers are equal to the sum and the product
of the eigenvalues of that matrix. We can try to do the same thing with operators on a
separable infinite-dimensional Hilbert space H. Take S in B(H), let {en} be an orthonormal
basis for a Hilbert space and try to compute∑

〈Sen, en〉.

Obvious problem: this sum may not converge.

Not-so-obvious problem: even if this sum converges, it might converge to something different
if we change our orthonormal basis – or it might not converge at all!

Instead look at ∑
〈
√
S∗Sen, en〉.

This (possibly infinite) sum does not depend on the choice of orthonormal basis. We say S
is trace class if the sum in finite. In this case,

∑
〈Sen, en〉 converges as well and also does

not depend on the choice of orthonormal basis {en}. We can therefore define the trace of S
in this case to be

trS =
∑
〈Sen, en〉.

The set of trace class operators is denoted L1 = L1(H).
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Properties of trace class operators:

(1) F ⊂ L1 ⊂ K;

(2) L1 is a (nonclosed) ideal in B(H);

(3) trS = sum of eigenvalues of S;

(4) If K and L are trace class, then K + L is trace class and tr(K + L) = trK + trL;

(5) If K is trace class and S is any (bounded) operator, then tr(KS) = tr(SK).

Proposition 4.1. If φ, ψ are smooth functions on S1, then TφTψ − TψTφ is trace class.
Furthermore, the trace of this commutator is invariant under trace class perturbations: if K
and L are trace class, then (Tφ +K)(Tψ + L)− (Tψ + L)(Tφ +K) is trace class and

tr ((Tφ +K)(Tψ + L)− (Tψ + L)(Tφ +K)) = tr(TφTψ − TψTφ).

Proof: We noted earlier that TφTψ − TψTφ is finite rank if φ and ψ are Laurent polynomials;
we can then do an approximation argument to establish the first statement. To prove the
second statement, multiply out (Tφ+K)(Tψ+L)−(Tψ+L)(Tφ+K) and then use Properties
4 and 5 above to get rid of all the terms except TφTψ − TψTφ.

The proposition suggests that we should be able to write down a formula for tr(TφTψ−TψTφ)
in terms of φ and ψ.

Theorem 4.2 (Helton-Howe). With the hypotheses above,

tr(TφTψ − TψTφ) =
1

2πi

∫
φ dψ = − 1

2πi

∫
ψ dφ.

Note that unlike the situation in finite-dimensional vector spaces, the trace of a commutator
can be nonzero!

What about determinants?
Let (L1)+ = {I + S : S ∈ L1}.

Lemma 4.3. Every element A in (L1)+ can be written as expS for some S in L1.

Definition: Given A in (L1)+, its determinant is defined as follows: Write A = exp(S). Then
detA = etrS. In other symbols, det(eS) = etrS.

This agrees with the usual definition of determinant for linear maps on finite-dimensional
vector spaces. The elements of (L1)+ are called determinant class operators.

Suppose that φ and ψ are nonvanishing smooth functions on the circle that have winding
number 1. Then Tφ and Tψ are both invertible by our earlier results, and the multiplicative
commutator TφTψT

−1
φ T−1

ψ is in (L1)+:

TφTψT
−1
φ T−1

ψ = I + (TφTψ − TψTφ)T−1
φ T−1

ψ .
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Question: What is det(TφTψT
−1
φ T−1

ψ )?

One property of the determinant is that det(ABA−1B−1) = 1 if A and B are invertible
determinant class operators (but not in general!). This fact along with a bit of computation
implies that

det(STS−1T−1) = det(TφTψT
−1
φ T−1

ψ )

for any invertible S and T in T such that σ(S) = φ and σ(T ) = ψ. This suggests that
perhaps there is formula for det(TφTψT

−1
φ T−1

ψ ) in terms of the symbols φ and ψ.

Because φ and ψ are nowhere zero and have winding number zero, log φ and logψ are defined.
Write these in terms of their Fourier series:

log φ =
∞∑

n=−∞

ane
inθ, logψ =

∞∑
n=−∞

bne
inθ

Theorem 4.4 (Helton-Howe). If φ and ψ are nowhere zero and have winding number zero,
then

det(TφTψT
−1
φ T−1

ψ ) = exp

(
∞∑

n=−∞

na−nbn

)

Not very pretty! But there’s a much prettier formula (IMHO).

Suppose that φ and ψ are restrictions of meromorphic functions (which we also denote φ and
ψ) defined in a neighborhood of the closed unit disk such that neither φ nor ψ has zeros or
poles on the unit circle. For each point z in the open unit disk D, define

v(φ, z) =


m if φ has a zero of order m at z

−m if φ has a pole of order m at z

0 if φ has neither a zero nor a pole at z,

and similarly define v(ψ, z). The quantity

lim
w→z

(−1)v(φ,z)v(ψ,z)ψ(w)v(φ,z)

φ(w)v(ψ,z)

is called the tame symbol of φ and ψ at z and is denoted (φ, ψ)z.

Theorem 4.5 (Carey-Pincus). If φ and ψ are nowhere zero and have winding number zero,
then

det(TφTψT
−1
φ T−1

ψ ) =
∏
z∈D

(φ, ψ)−1
z .

Remark: The quantity (φ, ψ)−1
z equals 1 for all but finitely many z in the open unit disk, so

the RHS is well defined.
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If φ and ψ are nowhere zero but do not have winding number zero, there is a way to generalize
the Carey-Pincus result. Define matrices

Φ =

φ 0 0
0 φ−1 0
0 0 1

 , Ψ =

ψ 0 0
0 1 0
0 0 ψ−1

 .

Then

Rφ =

2Tφ − TφTφ−1Tφ TφTφ−1 − I 0
I − Tφ−1Tφ Tφ−1 0

0 0 I


and

Sψ =

2Tψ − TψTψ−1Tψ 0 TψTψ−1 − I
0 I 0

I − Tψ−1Tψ 0 Tψ−1


are invertible matrices with entries in T , and therefore det(RφSψR

−1
φ S−1

ψ ) is defined. Fur-
thermore, its value does not depend on our choices of invertible “lifts” of Φ and Ψ.

Theorem 4.6.
det(RφSψR

−1
φ S−1

ψ ) =
∏
z∈D

(φ, ψ)−1
z

We see that the determinant in the theorem above only depends on φ and ψ. But in fact,
this determinant really only depends on the Steinberg symbol (different meaning of the word

“symbol”!) {φ, ψ} in the algebraic K-theory group Kalg
2 (C∞(S1)).
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