
MOD k INDEX THEOREM

EFTON PARK

1. The index problem

Let Q be a smooth compact spinc manifold with nonempty boundary ∂Q. We assume
that ∂Q consists of K isomorphic components. This goes back to work of Melrose and Freed
in the late 1980’s. Consider the Dirac operator on Q with APS boundary conditions. They
showed that index (D) ∈ Z is not a topological invariant, but it is a topological invariant
mod k. Question: can we compute index (D) topologically? Answer (Higson): Yes!

2. Index theory via operator algebras

Let H = H+⊕H− be a Z2-graded Hilbert space, and let ε =

(
1 0
0 −1

)
: H → H be the

grading operator. Define projections

Q+ =
1

2
(1 + ε) =

(
1 0
0 0

)
,

Q− =
1

2
(1− ε) =

(
0 0
0 1

)
,

and suppose that D : H → H is self-adjoint of odd degree, ie

D =

(
0 (D+)

∗

D+ 0

)
for some D+ : H+ → H−. Note that εD = −Dε.

Let B (H) be the algebra of bounded (continuous) linear maps H → H. We say C ⊆ B (H)
is a C∗-algebra if

• C is a subalgebra, not nec containing I
• C is closed under adjoint ∗
• C is closed in norm ( ‖T‖op = sup

f 6=0

‖Tf‖
‖f‖ .)

Suppose that C is a C∗-algebra such that

• (D ± i)−1 ∈ C
• εC ⊆ C
• the projections Q+, Q− /∈ C (prevents theorem from being trivial)

Example 2.1. D : L2 (S1) → L2 (S1).{zn : n ∈ Z} is an orthonormal basis. The operator
D
(
zn = einθ

)
:= nzn−1 is only densely defined and does not map L2 to L2. However, note

that (D + i) (zn) = (n+ i) zn, and (D + i)−1 (zn) = 1
(n+i)

zn, and this operator maps L2 to

L2! Here C is the set of compact operators (norm closure of finite rank operators).
1
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Let C̃ be the C∗-algebra of B (H) generated by C and ε (and thus contains I = ε2 and

Q±). Because εC ⊆ C, C is an ideal of C̃, and C̃�C ∼= C∗ (ε) = C∗-algebra generated by ε.
So we get a short split-exact sequence

0→ C → C̃ τ→ C∗ (ε)→ 0

with splitting ρ : C∗ (ε) → C̃ that is the inclusion. In K-theory, we get the short exact
sequence

0→ K0 (C)→ K0

(
C̃
)
→ K0 (C∗ (ε))→ 0.

We can actually do this in general. Let A be a C∗-algebra with unit. Let

M∞ (A) = lim
n→∞

Mn (A)

= infinite matrices over A with all but finitely many entries 0

(a) ↪→
(
a 0
0 0

)
↪→ ...

Let V (A) be the set of idempotents (A2 = A) from M∞ (A) mod homotopy of idempotents

(or similarity). V (A) is an abelian monoid with sum [P ] + [Q] =

[(
P 0
0 Q

)]
. Let K0 (A)

be the Grothendieck completion of V (A), the set of formal differences of elements of V (A)
with equivalence relation

[P ]− [Q] = [P ′]− [Q′] when

[P ] + [Q′] + [R] = [P ′] + [Q] + [R]

for some idempotent R.

Example 2.2. The Groth. completion of a group is itself. The Groth. completion of N∪{0}
is Z. The Groth. completion of N∪{0} ∪ {∞} is {0}.

3. Aside - Topological Quantum Computing

(from Greg – Zhenghung Wang CBMS conference in OK)
Overview of concept: Classically, a computer uses bits – sequence of zeros and ones —

goes through logic gates — spits out difference sequence of zeros and ones.
Quantum computing: have a Hilbert Space, states, qubit: C2: basis is {|0〉 , |1〉}. Other

elements are |011〉 = |0〉⊗ |1〉⊗ |1〉 ∈ C8 etc. Think of these as logical zeros and ones. Could
have a state that is a |0〉+ b |1〉 with a, b ∈ C.

Take |0〉 ∈ C2. Start with a qubit arrangement, say x = |0011〉, then act on it by
unitary operators, and the output is Ux. This is apparently more efficient for lots of kinds
of computations. But these systems are prone to errors.

Want quantum computers that are not sensitive to perturbations. This is where topology
comes in. Find a fractional quantum Hall liquid. Note the Hall effect – classical electromag-
netic effect. When you run electric current through a conductor in the presence of a magnetic
field. The Lorenz force will divert the electric field, and a voltage differential will occur on
the conductor. Classically the change in the voltage difference is linear in the current and
in the magnetic field. In the quantum realm (low temperature, high magnetic field), there
are plateaus in the graph of emf difference versus electric field. What essentially happens is
that the orbital energy levels make the electrons be trapped within levels – so you can’t get
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voltage changes. (Quantum Hall effect). The fractional quantum Hall effect — refinement
of the graph — more discrete levels – get symmetries and crystalline effects – extra blips.

New setup. Given fractional quantum Hall liquid – 2-d space. Fix quasiparticles (anyon –
sort of acts like particle) in liquid. (these are states in a Hilbert space) Then you can grab
these states and braid them. You look at the permutation / or braid. So each braid is a
unitary operator — get representation of braid group. The Hilbert space is the Temperley-
Lieb algebra (TLn : braids from n points to n points). Note — nonlocal property of the
system. — You can make logical gates out of this. This is a nonabelian process. Note
inner product on braids — need trace. You close the braid ”Plat closure” – gives a knot, an
element of TL0 = C. The answer is the value of the Jones polynomial on a particular fourth
root of unity.

4. Back to mod k index theory

Recap: H = H+ ⊕H− is a graded Hilbert space, ε =

(
1 0
0 −1

)
is the grading operator,

D : H+ → H−

is an unbounded, self-adjoint operator; that is, it is densely defined and 〈Df, g〉 = 〈f,Dg〉

for all f, g ∈ dom (D). Also, Dε = −εD, so D =

(
0 (D+)

∗

D+ 0

)
. We have C ⊂ B (H) be

a C∗-subalgebra, usually unital such that

• (D ± i)−1 ∈ C
• εC ⊂ C
• Q± : 1

2
(1± ε) /∈ C

Let C̃ be the C∗-subalgebra of B (H) generated by C and ε. Since ε2 = 1, it is unital. It

turns out the C is an ideal in C̃, because εC ⊂ C. Then you have the (split) short exact
sequence

0→ C → C̃ π−→ C∗ (ε)→ 0,

where

C∗ (ε) = {α + βε : α, β ∈ C} .

Let A be a C∗-algebra with unit. We can define M∞ (A) = lim
−→

Mn (A), with a ↪→
(
a 0
0 0

)
,

V (A) = {idempotents in M∞ (A)}� ∼, where ∼ is similarity or homotopy through idem-
potents. The operation + on V (A) is defined by:

[p] + [q] =

[(
p 0
0 q

)]
= [q] + [p] =

[(
q 0
0 p

)]
(the same by using a rotation matrix). The additive identity is [0], and this gives the notion
of an abelian monoid (associative abelian operation with identity but not nec inverses). Form
the Grothendieck completionK0 (A) of V (A), which consists of formal differences of elements
of V (A) modulo the equivalence relation [p]−[q] = [p′]−[q′] when [p]+[q′]+[r] = [p′]+[q]+[r]
for some idempotent r. (Why not eliminate the r part? The Universal Mapping property of
Grothendieck completion: Given any monoid homomorphism

φ : V (A)→ H,
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where H is an abelian group, there exists a unique group homomorphism K0 (A) → H

such that φ = V (A)
[p] 7→[p]−[0]−→ K0 (A) → H. A good example is the Chern character for

A = C (N) = C-valued continuous functions on N , which is defined for idempotents=vector
bundles to Heven (N,C), and thus it gives a Chern character on K0.

Functoriality of K0: If ψ : A → B is a C∗-algebra homomorphism between unital algebras,
you get a map

ψ∗ : K0 (A)→ K0 (B) ,

defined by ψ∗ [p] = [ψ (p)]. A use of this: let J be a C∗-algebra without unit. We define

J + = {j + λ1 : j ∈ J , λ ∈ C} ,
so

J +�J ∼= C
q : J + → C, q (j + λ1) = λ

Then
q∗ : K0

(
J +
)
→ K0 (C) ∼= Z

We define
K0 (J ) := ker q∗ .

Recall that we had
0→ C → C̃ π−→ C∗ (ε)→ 0,

even if there is no unit, then we know that we have a map

K0 (C)→ K0

(
C̃
)

π−→ K0 (C∗ (ε)) ,

but we don’t get the ends. But since we have a splitting, we do get

0→ K0 (C)→ K0

(
C̃
)

π−→ K0 (C∗ (ε))→ 0.

5. K-theory element associated to an unbounded operator

Choose a smooth function f : R → [−1, 1] such that f is odd, lim
x→∞

f (x) = 1. Let

g (x) =
√

1− f (x)2. Apply f and g to D via the spectral theorem (can use since D

commutes with its adjoint D):

f (D) =

∫
f (λ) Pλ dµ (λ) ,

similarly for g (D). Note that f (D) has an odd grading, and g (D) has an even grading and
thus commutes with ε. Set

U = εf (D) + g (D) .

Proposition 5.1. U is unitary.

Proof. U∗ = f (D) ε+ g (D), so

U∗U = (f (D) ε+ g (D)) (εf (D) + g (D))

= f (D)2 + g (D) εf (D) + f (D) εg (D) + g (D)2

= f (D)2 + εf (D) g (D)− εf (D) g (D) + g (D)2

= f (D)2 + g (D)2 = 1.
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Similarly, UU∗ = 1. �

Recall

Q± =
1

2
(1± ε) ,(

Q±
)2

= Q±

We define the idempotent

P = UQ+U∗ = g (D)2 ε− f (D) g (D) +Q−, so

P 2 = P

Recall we have

π : C̃ −→ C∗ (ε) ,

π (c) = 0 if c ∈ C,
π (ε) = ε.

The fact that (D ± i)−1 ∈ C and the Stone-Weierstrauss theorem imply that h (D) is in C
for any smooth h : R→ [−1, 1]. with lim

x→±∞
h (x) = 0. Thus, since g satisfies this condition,

π (P ) = π
(
Q−
)

= Q−,

since ε 7→ ε, 1 7→ 1. We have

[P ]−
[
Q−
]
∈ K0

(
C̃
)
,

and therefore

π∗
(
[P ]−

[
Q−
])

= 0.

Whence (from where)

[P ]−
[
Q−
]
∈ kerπ∗ = K0 (C) .

This element is defined to be the index class of D:

IndexC (D) := [P ]−
[
Q−
]
∈ K0 (C) .

Why does this not depend on the choice of f ?

Proposition 5.2. IndexC (D) does not depend on the choice of f .

Proof. Given f0, f1, do the straight line homotopy, and we use homotopy invariance of
K0. �

6. Digression: Partial Isometries

Polar form of complex numbers: Let z = reiθ, r ≥ 0, eiθeiθ = 1. For operators on
Hilbert space, T = PV , where P =

√
T ∗T . If T is invertible, then V = P−1T is unitary. In

general, you can define V as a partial isometry.
An operator V ∈ B (H) is called a partial isometry (p.i.) if ‖V f‖ = ‖f‖ for all

f ∈ (kerV )⊥. Algebraically, V is a p.i. if and only if V V ∗ and V ∗V are projections (self-
adjoint idempotents). Note that in infinite dimensions, isometries are not necessarily unitary.
For example, let H = l2 (N ∪ {0}). Then the delta functions {δn} form an orthonormal basis.
Let S : H → H be defined by S (δn) = δn+1. This is injective but not surjective.
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7. Motivating Example

Let M be a closed Riemannian manifold, and let V = V + ⊕ V − be a smooth Hermitian
vector bundle over M . Let H± be the space of L2-sections of V ±. Let D be a first order,
symmetric elliptic operator. Let K be the ideal of compact operators, the norm closure of
finite rank operators on H. Then ellipticity implies

(D ± i)−1 ∈ K.
Also,

εK = K,
since K is an ideal. Also,

Q± =
1

2
(1± ε) /∈ K.

We can choose an orthonormal basis {φn} of eigensections of D.

Dφn = λnφn

Assume these are ordered so that

... ≤ λ−2 ≤ λ−1 ≤ λ0 ≤ λ1 ≤ ...

Define f to be a cutoff function that is +1 for x > x0 > 0 and −1 for x < −x0 < 0 with x0

less than any positive eigenvalue and −x0 greater than any negative eigenvalue. Then

f (D) =

(
0 W ∗

W 0

)
with V a partial isometry, and

kerW = kerD+, kerW ∗ = ker
(
D+
)∗
.

Moreover,

g (D) =

(
P0 0
0 P1

)
,

where P0 is the projection onto ker (D+), P1 is the projection onto ker (D+)
∗
. Then

P = UQ+U∗ =

(
P0 0
0 1− P1

)
,

so

[P ]−
[
Q−
]

=

[(
P0 0
0 1− P1

)]
−
[(

0 0
0 1

)]
=

[(
P0 0
0 0

)]
+

[(
0 0
0 1− P1

)]
−
[(

0 0
0 1

)]
=

[(
P0 0
0 0

)]
−
[(

0 0
0 P1

)]
= [P0]− [P1] .

Next, K0 (K) ∼= Z, and

[ρ]− [ρ′]↔ Tr (ρ)− Tr (ρ′) ,

so

[P0]− [P1]↔ Tr (P0)− Tr (P1) = dim ker
(
D+
)
− dim ker

(
D+
)∗
.
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8. The analytical index

Definition 8.1. A Zk-structure on a Hilbert space H is a separable infinite dimensional
Hilbert space L together with k isometries ei : L → H whose ranges are pairwise orthogonal.

Define partial isometries

eij := eie
∗
j , i 6= j

and projections

pi = eie
∗
i , i = 1, 2, ..., k

Also define

p0 = 1− p1 − p2 − ...− pk
The subalgebra Dk (H) of B (H) is defined as

Dk (H) = {A ∈ B (H) : [A, eij] ∈ K (H) for all i 6= j and Ap0 ∈ K (H)} .

Proposition 8.2. K (H)CDk (H) (is an ideal of)

Define

α : B (L)→ Dk (H)

by

α (S) =
k∑
i=1

eiSe
∗
i

Check: since e∗l ei = 0 unless l = i and is the identity if l = i

[α (S) , eij] = α (S) eij − eijα (S)

=
∑
l

elSe
∗
l eie

∗
j − eie∗jelSe∗l

= eiSe
∗
i eie

∗
j − eie∗jejSe∗j

= ei
(
Se∗i ei − e∗jejS

)
e∗j

= ei (S − S) e∗j = 0

Also

α (S) p0 =
∑
l

elSe
∗
l

(
1−

∑
j

eje
∗
j

)
=

∑
l

elSe
∗
l −

∑
l

elSe
∗
l ele

∗
l

=
∑
l

elSe
∗
l −

∑
l

elSe
∗
l = 0.

Proposition 8.3. The quotient map

α̃ : B (L)�K (L)→ Dk (H)�K (H)

is an isomorphism.
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We have the following commutative diagram with exact rows:

0 → K (H) → Dk (H) → Dk (H)�K (H) → 0
α ↑ α ↑ α̃ ↑

0 → K (L) → B (L) → B (L)�K (L) → 0

We apply the K-theory exact sequence to get (assuming that L is infinite dimensional)

K1 (Dk (H)�K (H)) −→ K0 (K (H)) = Z −→ K0 (Dk (H)) −→ K0 (Dk (H)�K (H)) = 0
α̃∗ ↑ α∗ ↑ α∗ ↑ α∗ ↑

K1 (B (L)�K (L)) −→ K0 (K (L)) = Z −→ K0 (B (L)) −→ K0 (B (L)�K (L)) = 0

As a consequence, the image of α∗ is kK (H) ∼= kZ. This implies that K0 (Dk (H)) ∼=
Z�kZ = Zk. This is where the analytic and topological indices live.

9. The analytic index

LetM be an oriented, even-dimensional, complete Riemannian manifold without boundary
that is not necessarily compact. Let S be a smooth (Hermitian or orthogonal) vector bundle
equipped with a smooth action of the Clifford bundle Cl (TM) and compatible connections.
We’ll call S a Dirac bundle. For any vector bundle E → M , the bundle S ⊗ E becomes a
Dirac bundle in a natural way. For any Dirac bundle S, there is an associated Dirac operator,
which is locally

DS =
∑
i

fi · ∇fi
: C∞ (S)→ C∞ (S)

and is formally self-adjoint. This can be closed up to a self-adjoint operator, but the closure
depends on the metric.

Let Q be a compact, oriented, even-dimensional manifold whose boundary consists of k
diffeomorphic pieces (∂Q)1,(∂Q)2 , ..., (∂Q)k. Recall that Q admits a Zk-structure if there
exists an oriented Riemannian manifold P and orientation-preserving diffeomorphisms

γi : Vi → [0, 1]× P, 1 ≤ i ≤ k,

where Vi is a collared neighborhood of (∂Q)i. The next step is to attach cylindrical ends to
the Vi. This becomes M , a manifold with cylindrical ends. A Riemannian metric on Q is a
choice of Riemannian metric on Q and the ends so that the γi’s are isometries. A Zk bundle
over Q is a smooth vector bundle E over Q, a smooth vector bundle F over P and liftings
of the γi’s to “isomorphisms” E|Vi

∼= π∗F , where π : [0, 1]× P → P is given by π (t, p) = p.
A spinc structure on an oriented even-dimensional Zk vector bundle V over Q is a Hermitian
Zk bundle S equipped with a Clifford action on V . On the Vi’s, the Clifford action is pulled
back from [0, 1]× P . A spinc structure on Q is a spinc structure on TQ.

Now form a complete Riemannian manifold M by attaching cylinders [1,∞)× P to each
of (∂Q)i, 1 ≤ i ≤ k. If E is a Hermitian Zk-bundle over Q, extend in the obvious ways.
Also, take the Dirac bundle S over Q and extend to M . Let DE denote the Dirac operator
on L2 (S ⊗ E).

The Hilbert space L2 (S ⊗ E) admits the Zk-structure with

L = L2
(
S ⊗ E|[1,∞)×P

)
.

The isometries e1, ..., ek come from the inclusion of [1,∞)× P into M (each end).

Proposition 9.1. (DE ± 1)−1 ∈ Dk (L2 (S ⊗ E)) = {Y ∈ B (L2 (S ⊗ E)) : [Y, eij] ∈ K, Y p0 ∈ K}.
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(the proof is related to unit propagation speed.)
From our earlier work, this DE determines a class

Indexk (DE) ∈ K0

(
Dk
(
L2 (S ⊗ E)

)) ∼= Zk
This is called the analytical index.

Theorem 9.2. (N. Higson, D. Freed, R. Melrose)

Indexk (DE)

coincides with the index problem with APS boundary conditions on Q (mod k).

10. Topological Index

Let H =
{
x ∈ R2d : x1 < 0

}
. Construct a Zk-manifold X by attaching k disjoint open

disks of radius 1 to H. Let
X̂ = X�disks identified

A proof similar to the one that showed K0 (C) ∼= Zk shows that the inclusion of H in X̂
induces an isomorphism

K0
(
X̂
)
∼= K0 (H)�kK0 (H) ∼= Zk .

Note that K0 (H) ∼= Z comes from Bott periodicity.

Alternate description of K0
(
X̂
)
: Look at triples (U, S,G), where U is an open Zk

submanifold of X, S is a Z2-graded Zk bundle over U , and G is a self-adjoint bundle en-

domorphism of S such that G2 is positive off a compact subset of U . Let Û be the locally
compact space obtained by identifying the k boundary pieces of U . This produces a vector

bundle Ŝ over Û and endomorphism Ĝ which is invertible off of a compact subset of Û .

The triple
(
Û , Ŝ, Ĝ

)
determines an element of K0

(
Û
)

and the inclusion Û ↪→ X̂ deter-

mines a homomorphism K0
(
Û
)
→ K0

(
X̂
)

.

Imbed Q into X̂ (for some d) as a Zk submanifold (ends inside ends of X̂). The normal

bundle νQ is a Zk-bundle over Q, and the spinc structures on Q and on X̂ determines a
spinc structure on the normal bundle. Let N be the total space of νQ; let S∗ be the complex
conjugate of the Dirac bundle S over νQ. Then π∗ (S∗) is the pullback to N . Let J be a
self-adjoint endomorphism of π∗ (S∗) determined by the formula

J (v) = εv,

where v acts by Clifford multiplication and ε is the grading operator. Let N be a tubular
neighborhood of Q in N , imbedded into X. Then,

(N , π∗S∗, J∗) ∈ K0
(
X̂
)
.

Definition: Let E be a Zk-bundle over Q, and set τk (E) := (N , π∗ (S∗ ⊗ E) , J∗) ∈
K0
(
X̂
)

.

Theorem 10.1. τk (E) = Indexk (DE).
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