NONCOMMUTATIVE GEOMETRY AND TOPOLOGY

EFTON PARK

1. Cyclic homology

Let A be a C-algebra with unit, and for each nonnegative integer n, let $C_n^{\lambda}(A)$ be the A-module $A \otimes A \otimes \cdots \otimes A$ (n + 1 factors) modulo the relation

$$a_n \otimes a_0 \otimes a_1 \otimes \cdots \otimes a_{n-1} = (-1)^n a_0 \otimes a_1 \otimes \cdots \otimes a_{n-1} \otimes a_n$$

The A-linear map $b: \otimes^{n+1} A \longrightarrow \otimes^n A$ determined by

$$b(a_0 \otimes a_1 \otimes \cdots \otimes a_{n-1} \otimes a_n) = a_0 a_1 \otimes a_2 \otimes \cdots \otimes a_{n-1} \otimes a_n + \sum_{i=1}^{n-1} (-1)^i a_0 \otimes a_1 \otimes \cdots \otimes a_{i-1} \otimes a_i a_{i+1} \otimes a_{i+2} \otimes \cdots \otimes a_n + (-1)^n a_n a_0 \otimes a_1 \otimes \cdots \otimes a_{n-1}$$

passes to a map $b: C_n^{\lambda}(A) \longrightarrow C_{n-1}^{\lambda}(A)$ with the property that $b^2 = 0$. The cyclic homology of A is the homology $H_*^{\lambda}(A)$ of the complex $(C_*^{\lambda}(A), b)$.

We sometimes write $a_0 \otimes a_1 \otimes \cdots \otimes a_{n-1} \otimes a_n$ as a noncommutative differential form $a_0 da_1 da_2 \ldots da_n$. When $A = C^{\infty}(M)$ for some smooth compact manifold M, this determines isomorphisms

$$H_{2n}^{\lambda}(C^{\infty}(M)) \cong H_{dR}^{even}(M), \quad H_{2n+1}^{\lambda}(C^{\infty}(M)) \cong H_{dR}^{odd}(M)$$

for n sufficiently large.

Question: Where do interesting elements of $HC_*^{\lambda}(A)$ come from?

Answer: From the *K*-theory of *A*.

Let e be an idempotent in M(m, A). Then trace $(e(de)^{2n})$ determines an element of $H_{2n}^{\lambda}(A)$ for each natural number n.

Let s be an element in $\operatorname{GL}(m, A)$. Then trace $((s^{-1} ds)^{2n+1})$ determines an element of $H_{2n+1}^{\lambda}(A)$ for each natural number n.

2. Cyclic cohomology

Let A be a topological \mathbb{C} -algebra with unit, and for each natural number n, let $C^n(A)$ denote the A-module of continuous multilinear maps $\tau : A^{n+1} \longrightarrow \mathbb{C}$, and let $C^n_{\lambda}(A)$ be the A-submodule of elements τ in $C^n(A)$ that satisfy

$$\tau(a_n, a_0, a_1, \dots, a_{n-1}) = (-1)^n \tau(a_0, a_1, \dots, a_n)$$

Date: April 1, 2010.

EFTON PARK

for all a_0, a_1, \ldots, a_n in A. The map $b: C^n(A) \longrightarrow C^{n+1}(A)$ by the formula

$$(b\tau)(a_0, a_1, \dots, a_{n+1}) = \tau(a_0 a_1, a_2, \dots, a_{n+1}) + \sum_{i=1}^n (-1)^i \tau(a_0, \dots, a_{i-1}, a_i a_{i+1}, a_{i+2}, \dots, a_{n+1}) + (-1)^{n+1} \tau(a_{n+1} a_0, a_1, \dots, a_n)$$

has the property that $b^2 = 0$, and b restricts to a map from $C^n_{\lambda}(A)$ to $C^{n-1}_{\lambda}(A)$. The cohomology $H^*_{\lambda}(A)$ of the complex $(C^*_{\lambda}(A), b)$ is called the *cyclic cohomology* of A.

Question: Where do interesting elements of $HC^*_{\lambda}(A)$ come from?

Answer: From Fredholm modules over A.

3. Fredholm modules

Let \mathcal{H} be a Hilbert space. A (bounded) *operator* on \mathcal{H} is a continuous linear map from \mathcal{H} to \mathcal{H} . The algebra of all operators on \mathcal{H} is denoted $\mathcal{B}(\mathcal{H})$. An element Kin $\mathcal{B}(\mathcal{H})$ is *compact* if it is the norm limit of finite-rank operators on \mathcal{H} .

Theorem 3.1. The spectrum of a compact operator on a Hilbert space consists entirely of eigenvalues whose only accumulation point is zero. Furthermore, each nonzero eigenvalue has finite multiplicity.

Let K be a compact operator on a Hilbert space, and let $\lambda_1, \lambda_2, \ldots$, be the eigenvalues of K^*K listed in nondecreasing order (counting multiplicities). We say K is in the Schatten p-class $L^p(\mathcal{H})$ if

$$\sum_{n=1}^{\infty} \lambda_n^{p/2} < \infty.$$

Elements of $L^1(\mathcal{H})$ are called *trace class operators*.

Definition 3.2. Let A be a unital \mathbb{C} -algebra. A Fredholm module over A is a triple (\mathcal{H}, π, F) , where

- \mathcal{H} is a \mathbb{Z}_2 -graded Hilbert space with grading operator ε ;
- $\pi: A \longrightarrow \mathcal{B}(\mathcal{H})$ is a representation of A on \mathcal{H} that respects the grading;
- $F \in \mathcal{B}(\mathcal{H})$ anticommutes with the grading, $F^2 I$, and $F\pi(a) \pi(a)F$ is compact for every a in A.

If there exists a positive number p such that $F\pi(a) - \pi(a)F$ is in $L^p(\mathcal{H})$ for all a in A, we say that (\mathcal{H}, π, F) is p-summable; if this condition only holds for some dense subalgebra \mathcal{A} of A, we say that (\mathcal{H}, π, F) is essentially p-summable.

Prototypical example: A = C(M) for some smooth compact manifold M, $\mathcal{H} = L^2(M, E)$ for some \mathbb{Z}_2 -graded Hermitian vector bundle over M, A acts on \mathcal{H} by pointwise multiplication, D is an operator of Dirac type acting on \mathcal{H} , and $F = D(1 + D^2)^{-1/2}$. This Fredholm module is essentially *p*-summable for $p > \dim M$.

The *character* of an essentially 1-summable Fredholm module (\mathcal{H}, π, F) over a not necessarily commutative topological \mathbb{C} -algebra A is a linear function

$$\rho(a) = \frac{1}{2} \operatorname{trace} \left(\varepsilon F[F, \pi(a)] \right).$$

The linear map ρ determines an element of $H^1_{\lambda}(A)$. More generally, an *n*-summable Fredholm module over A determines an element of $H^n_{\lambda}(A)$.

We have a commutative diagram

4. An interesting application

Let Γ be a discrete group and let $\mathbb{C}\Gamma$ be its complex group algebra. We take the left regular representation of $\mathbb{C}\Gamma$ on the Hilbert space $\ell^2(\Gamma)$, and as we discussed in the last lecture, the closure of $\mathbb{C}\Gamma$ in $\mathcal{B}(\ell^2(\Gamma))$ is the *reduced* C^* -algebra $C_r^*(\Gamma)$ of Γ .

Bass Idempotent Conjecture: Let Γ be a torsion free discrete group. Then $\mathbb{C}\Gamma$ contains no nontrivial idempotents; i.e., the only idempotents in $\mathbb{C}\Gamma$ are 0 and 1.

Kadison's Conjecture: Let Γ be a torsion free discrete group. Then $C_r^*(\Gamma)$ contains no nontrivial idempotents.

Note the Kadison's Conjecture implies the Bass Idempotent Conjecture.

We are going to prove Kadison's Conjecture for $\Gamma = F_2$, the free group on two generators.

Definition: Let A be a C*-algebra and suppose A admits a trace function $\tau : A \longrightarrow \mathbb{C}$ such that

- τ is *positive*; i.e., $\tau(a^*a) \ge 0$ for all a in A;
- τ is faithful; i.e., $\tau(a^*a) = 0$ if and only if a = 0.

Proposition: Let A be a C^* -algebra that admits a positive faithful trace τ such that $\tau(1) = 1$. Let (\mathcal{H}, π, F) be a Fredholm module over A, and suppose that the subalgebra $\mathcal{A} = \{a \in A : F\pi(a) - \pi(a)F \in \mathcal{L}^1(\mathcal{H})\}$ is dense in A (Note that this means that (\mathcal{H}, π, F) is also a Fredholm module over \mathcal{A}). Further suppose that the character ρ of (\mathcal{H}, π, F) agrees with τ on \mathcal{A} . Then A contains no nontrivial idempotent.

Proof: The inclusion map $\mathcal{A} \longrightarrow \mathcal{A}$ determines an isomorphism in K-theory, so we may assume that any idempotent e in \mathcal{A} is actually in \mathcal{A} , and also that it is self adjoint; in other words, e is a projection. By our commutative diagram, $\rho(e) = \tau(e)$ is an integer. Next, because $e = e^2 = e^*e$, we know that $0 \leq \tau(e)$. On the other

hand, 1-e is also a projection, so $0 \le \tau(1-e) = \tau(1) - \tau(e) = 1 - \tau(e)$, or $\tau(e) \le 1$. Therefore $\tau(e)$ equals 0 or 1. If $\tau(e) = 0$, then e = 0 by the faithfulness of the trace. If $\tau(e) = 1$, then $\tau(1-e) = 0$, whence e = 1 by the faithfulness of the trace.

There is a positive faithful trace $\tilde{\tau}$ on $\mathbb{C}F_2$

$$\tilde{\tau}\Big(\sum_{\gamma\in F_2}c_\gamma\gamma\Big)=c_1$$

that extends to a positive faithful trace τ on $C_r^*(F_2)$.

Let T be a tree upon which F_2 freely and transitively. Let T_0 and T_1 denote the vertices and edges of T respectively. Fix a vertex v_0 in T and define a map $\phi: T_0 \setminus \{v_0\} \longrightarrow T_1$ by requiring that for each vertex $v \neq v_0$, the edge $\phi(v)$ is the one that has v as one of its endpoints and is part of the unique arc between v and v_0 . The map ϕ is "almost equivariant"; that is, for each γ in F_2 , we have $\phi(\gamma v) = \gamma \phi(v)$ for all but finitely many vertices v. Set $\mathcal{H}^+ = \ell^2(T_0)$ and $\mathcal{H}^- = \ell^2(T_1) \oplus \mathbb{C}$. The action of F_2 on T_0 determines a representation π^+ of $C_r^*(\Gamma)$ on $\mathcal{H}^+ = \ell^2(T_0)$. In addition, the action of F_2 on T_1 determines a representation $\tilde{\pi}$ of $C_r^*(\Gamma)$ on $\ell^2(T_1)$ which in turn gives us a representation π^- of $C_r^*(\Gamma)$ on \mathcal{H}^- via the formula $\pi^-(a)(\xi, \alpha) = (\tilde{\pi}(a)\xi, 0)$.

Define $P: \mathcal{H}^+ \longrightarrow \mathcal{H}^-$ by the formula

$$P\delta_v = \begin{cases} (0,1) & v = v_0\\ (\delta_{\phi(v)}, 0) & v \neq v_0. \end{cases}$$

Proposition: Let $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$, let $\pi = \pi^+ \oplus \pi^-$, and let

$$F = \begin{pmatrix} 0 & P^{-1} \\ P & 0 \end{pmatrix}.$$

Then (\mathcal{H}, π, F) is an essentially 1-summable Fredholm module.

Proof: For every γ in F_2 , the commutator $P\pi(\gamma) - \pi(\gamma)P$ has finite rank, because ϕ is almost equivariant. Therefore $\pi(\mathbb{C}F_2)$ is contained in the subalgebra

$$\mathcal{A} = \{ a \in C_r^*(\Gamma) : \pi(a)F - F\pi(a) \in \mathcal{L}^1(\mathcal{H}) \}$$

of $C_r^*(F_2)$, and because $\pi(\mathbb{C}F_2)$ is dense in $C_r^*(F_2)$, the algebra \mathcal{A} is dense in $C_r^*(F_2)$ as well.

When we compute the character of (\mathcal{H}, π, F) , we find that

$$\rho(a) = \frac{1}{2}\operatorname{trace}\left(\varepsilon F[F, \pi(a)]\right) = \operatorname{trace}(\pi(a) - P^{-1}\pi(a)P) = \tau(a)$$

for every a in \mathcal{A} . Therefore, we have

Theorem: The group C^* -algebra $C^*_r(F_2)$ contains no nontrivial idempotent.