
NONCOMMUTATIVE GEOMETRY AND TOPOLOGY

EFTON PARK

1. Cyclic homology

Let A be a C-algebra with unit, and for each nonnegative integer n, let Cλn(A) be
the A-module A⊗A⊗ · · · ⊗A (n+ 1 factors) modulo the relation

an ⊗ a0 ⊗ a1 ⊗ · · · ⊗ an−1 = (−1)na0 ⊗ a1 ⊗ · · · ⊗ an−1 ⊗ an.

The A-linear map b : ⊗n+1A −→ ⊗nA determined by

b(a0 ⊗ a1 ⊗ · · · ⊗ an−1 ⊗ an) = a0a1 ⊗ a2 ⊗ · · · ⊗ an−1 ⊗ an

+

n−1∑
i=1

(−1)ia0 ⊗ a1 ⊗ · · · ⊗ ai−1 ⊗⊗aiai+1 ⊗ ai+2 ⊗ · · · ⊗ an

+ (−1)nana0 ⊗ a1 ⊗ · · · ⊗ an−1

passes to a map b : Cλn(A) −→ Cλn−1(A) with the property that b2 = 0. The cyclic

homology of A is the homology Hλ
∗ (A) of the complex (Cλ∗ (A), b).

We sometimes write a0⊗a1⊗· · ·⊗an−1⊗an as a noncommutative differential form
a0 da1 da2 . . . dan. When A = C∞(M) for some smooth compact manifold M , this
determines isomorphisms

Hλ
2n(C∞(M)) ∼= Heven

dR (M), Hλ
2n+1(C∞(M)) ∼= Hodd

dR (M)

for n sufficiently large.

Question: Where do interesting elements of HCλ∗ (A) come from?

Answer: From the K-theory of A.

Let e be an idempotent in M(m,A). Then trace
(
e (de)2n

)
determines an element

of Hλ
2n(A) for each natural number n.

Let s be an element in GL(m,A). Then trace
(
(s−1 ds)2n+1

)
determines an element

of Hλ
2n+1(A) for each natural number n.

2. Cyclic cohomology

Let A be a topological C-algebra with unit, and for each natural number n, let
Cn(A) denote the A-module of continuous multilinear maps τ : An+1 −→ C, and
let Cnλ (A) be the A-submodule of elements τ in Cn(A) that satisfy

τ(an, a0, a1, . . . , an−1) = (−1)nτ(a0, a1, . . . , an)
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for all a0, a1, . . . an in A. The map b : Cn(A) −→ Cn+1(A) by the formula

(bτ)(a0, a1, . . . , an+1) = τ(a0a1, a2, . . . , an+1)

+

n∑
i=1

(−1)iτ(a0, . . . , ai−1, aiai+1, ai+2, . . . , an+1)

+ (−1)n+1τ(an+1a0, a1, . . . , an)

has the property that b2 = 0, and b restricts to a map from Cnλ (A) to Cn−1λ (A).
The cohomology H∗λ(A) of the complex (C∗λ(A), b) is called the cyclic cohomology
of A.

Question: Where do interesting elements of HC∗λ(A) come from?

Answer: From Fredholm modules over A.

3. Fredholm modules

Let H be a Hilbert space. A (bounded) operator on H is a continuous linear map
from H to H. The algebra of all operators on H is denoted B(H). An element K
in B(H) is compact if it is the norm limit of finite-rank operators on H.

Theorem 3.1. The spectrum of a compact operator on a Hilbert space consists
entirely of eigenvalues whose only accumulation point is zero. Furthermore, each
nonzero eigenvalue has finite multiplicity.

Let K be a compact operator on a Hilbert space, and let λ1, λ2, . . . , be the eigen-
values of K∗K listed in nondecreasing order (counting multiplicities). We say K is
in the Schatten p-class Lp(H) if

∞∑
n=1

λp/2n <∞.

Elements of L1(H) are called trace class operators.

Definition 3.2. Let A be a unital C-algebra. A Fredholm module over A is a triple
(H, π, F ), where

• H is a Z2-graded Hilbert space with grading operator ε;
• π : A −→ B(H) is a representation of A on H that respects the grading;
• F ∈ B(H) anticommutes with the grading, F 2 − I, and Fπ(a) − π(a)F is

compact for every a in A.

If there exists a positive number p such that Fπ(a) − π(a)F is in Lp(H) for all a
in A, we say that (H, π, F ) is p-summable; if this condition only holds for some
dense subalgebra A of A, we say that (H, π, F ) is essentially p-summable.

Prototypical example: A = C(M) for some smooth compact manifold M , H =
L2(M,E) for some Z2-graded Hermitian vector bundle over M , A acts on H by
pointwise multiplication, D is an operator of Dirac type acting on H, and F =
D(1 +D2)−1/2. This Fredholm module is essentially p-summable for p > dimM .
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The character of an essentially 1-summable Fredholm module (H, π, F ) over a not
necessarily commutative topological C-algebra A is a linear function

ρ(a) =
1

2
trace (εF [F, π(a)]) .

The linear map ρ determines an element of H1
λ(A). More generally, an n-summable

Fredholm module over A determines an element of Hn
λ (A).

We have a commutative diagram

H∗λ(A)

Fred(A)

Hλ
∗ (A)

K∗(A)

C

Z

×

×

∨ ∨ ∨

>

>

index

4. An interesting application

Let Γ be a discrete group and let CΓ be its complex group algebra. We take the
left regular representation of CΓ on the Hilbert space `2(Γ), and as we discussed in
the last lecture, the closure of CΓ in B

(
`2(Γ)

)
is the reduced C∗-algebra C∗r (Γ) of

Γ.

Bass Idempotent Conjecture: Let Γ be a torsion free discrete group. Then CΓ
contains no nontrivial idempotents; i.e., the only idempotents in CΓ are 0 and 1.

Kadison’s Conjecture: Let Γ be a torsion free discrete group. Then C∗r (Γ)
contains no nontrivial idempotents.

Note the Kadison’s Conjecture implies the Bass Idempotent Conjecture.

We are going to prove Kadison’s Conjecture for Γ = F2, the free group on two
generators.

Definition: Let A be a C∗-algebra and suppose A admits a trace function τ :
A −→ C such that

• τ is positive; i.e., τ(a∗a) ≥ 0 for all a in A;
• τ is faithful ; i.e., τ(a∗a) = 0 if and only if a = 0.

Proposition: Let A be a C∗-algebra that admits a positive faithful trace τ such
that τ(1) = 1. Let (H, π, F ) be a Fredholm module over A, and suppose that the
subalgebra A = {a ∈ A : Fπ(a) − π(a)F ∈ L1(H)} is dense in A (Note that this
means that (H, π, F ) is also a Fredholm module over A). Further suppose that
the character ρ of (H, π, F ) agrees with τ on A. Then A contains no nontrivial
idempotent.

Proof: The inclusion map A −→ A determines an isomorphism in K-theory, so
we may assume that any idempotent e in A is actually in A, and also that it is self
adjoint; in other words, e is a projection. By our commutative diagram, ρ(e) = τ(e)
is an integer. Next, because e = e2 = e∗e, we know that 0 ≤ τ(e). On the other
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hand, 1−e is also a projection, so 0 ≤ τ(1−e) = τ(1)−τ(e) = 1−τ(e), or τ(e) ≤ 1.
Therefore τ(e) equals 0 or 1. If τ(e) = 0, then e = 0 by the faithfulness of the trace.
If τ(e) = 1, then τ(1− e) = 0, whence e = 1 by the faithfulness of the trace.

There is a positive faithful trace τ̃ on CF2

τ̃
(∑
γ∈F2

cγγ
)

= c1

that extends to a positive faithful trace τ on C∗r (F2).

Let T be a tree upon which F2 freely and transitively. Let T0 and T1 denote
the vertices and edges of T respectively. Fix a vertex v0 in T and define a map
φ : T0\{v0} −→ T1 by requiring that for each vertex v 6= v0, the edge φ(v) is the one
that has v as one of its endpoints and is part of the unique arc between v and v0.
The map φ is “almost equivariant”; that is, for each γ in F2, we have φ(γv) = γφ(v)
for all but finitely many vertices v. Set H+ = `2(T0) and H− = `2(T1) ⊕ C. The
action of F2 on T0 determines a representation π+ of C∗r (Γ) on H+ = `2(T0).
In addition, the action of F2 on T1 determines a representation π̃ of C∗r (Γ) on
`2(T1) which in turn gives us a representation π− of C∗r (Γ) on H− via the formula
π−(a)(ξ, α) = (π̃(a)ξ, 0).

Define P : H+ −→ H− by the formula

Pδv =

{
(0, 1) v = v0

(δφ(v), 0) v 6= v0.

Proposition: Let H = H+ ⊕H−, let π = π+ ⊕ π−, and let

F =

(
0 P−1

P 0

)
.

Then (H, π, F ) is an essentially 1-summable Fredholm module.

Proof: For every γ in F2, the commutator Pπ(γ)−π(γ)P has finite rank, because
φ is almost equivariant. Therefore π(CF2) is contained in the subalgebra

A = {a ∈ C∗r (Γ) : π(a)F − Fπ(a) ∈ L1(H)}
of C∗r (F2), and because π(CF2) is dense in C∗r (F2), the algebra A is dense in C∗r (F2)
as well.

When we compute the character of (H, π, F ), we find that

ρ(a) =
1

2
trace (εF [F, π(a)]) = trace(π(a)− P−1π(a)P ) = τ(a)

for every a in A. Therefore, we have

Theorem: The group C∗-algebra C∗r (F2) contains no nontrivial idempotent.


