
ARE DIRAC OPERATORS GOOD FOR NOTHING?

KEN RICHARDSON

1. Introduction

In this survey, we figure out what the %$#@&* a Dirac operator is good for.

2. The Atiyah-Singer Index Theorem

In this section I give a quick survey of index theory results. You can skip this section if
you want. Given Banach spaces S and T , a bounded linear operator L : S → T is called
Fredholm if its range is closed and its kernel and cokernel T�L (S) are finite dimensional.
The index of such an operator is defined to be

ind (L) = dim ker (L)− dim coker (L) ,

and this index is constant on continuous families of such L. Suppose that D is an elliptic
operator of order m on sections of a vector bundle E± over a smooth, compact manifold M .
Let Hs (Γ (M, E±)) denote the Sobolev s-norm completion of the space of sections Γ (M, E),
with respect to a chosen metric. Then D can be extended to be a bounded linear operator
Ds : Hs (Γ (M, E+)) → Hs−m (Γ (M, E−)) that is Fredholm, and ind (D) := ind

(
Ds

)
is

well-defined and independent of s. In the 1960s, the researchers M. F. Atiyah and I. Singer
proved that the index of an elliptic operator on sections of a vector bundle over a smooth
manifold satisfies the following formula ([1],[2]):

ind (D) =

∫
M

ch (σ (D)) ∧ Todd (TCM)

=

∫
M

α (x) dvol (x) ,

where ch (σ (D)) is a form representing the Chern character of the principal symbol σ (D),
and Todd (TCM) is a form representing the Todd class of the complexified tangent bundle
TCM ; these forms are characteristic forms derived from the theory of characteristic classes
and depend on geometric and topological data. The local expression for the relevant term
of the integrand, which is a multiple of the volume form dvol (x), can be written in terms of
curvature and the principal symbol and is denoted α (x) dvol (x).

If D is a first order elliptic differential operator, let K+ (t, x, y), respectively K− (t, x, y),
denote the kernel of the operator e−tD∗D, respectively e−tDD∗

. Then for any N ∈ N, there
are smooth functions c±j on M such that

tr K± (t, x, x) =
N∑

j=0

c±j (x) tj−
dim M

2 +O
(
tN+1−dim M

2

)
.

If D were pseudodifferential, then we would have a similar asymptotic formula, but other
terms would be present in the expansion, such as terms that include log t. Continuing, we
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have

ind (D) = dim ker D − dim ker D∗

= tr
(
e−tD∗D

)
− tr

(
e−tDD∗)

for every t > 0

=

∫
M

tr K+ (t, x, x) dvol (x)−
∫

M

tr K− (t, x, x) dvol (x)

=

∫
M

[
c+

dim M
2

(x)− c−dim M
2

(x)
]

dvol (x) .

In fact, we have that the integrand in the Atiyah-Singer Index Theorem satisfies

α (x) = c+
dim M

2

(x)− c−dim M
2

(x) .

Note that this expression is identically zero if dim M is odd.
Typical examples of this theorem are some classic theorems in global analysis. First, let

D = d + d∗ from the space of even forms to the space of odd forms on the manifold M
of dimension 2n, where d∗ denotes the L2-adjoint of the exterior derivative d. Then the
elements of ker (d + d∗) are the even harmonic forms, and the elements of the cokernel can
be identified with odd harmonic forms. Moreover,

ind (d + d∗) = dim Heven (M)− dim Hodd (M)

= χ (M) , and∫
M

ch (σ (d + d∗)) ∧ Todd (TCM) =
1

(2π)n

∫
M

Pf,

where Pf is the Pfaffian, which is, suitably interpreted, a characteristic form obtained using
the square root of the determinant of the curvature matrix. In the case of 2-manifolds
(n = 1), Pf is the Gauss curvature times the area form. Thus, in this case the Atiyah-Singer
Index Theorem yields the generalized Gauss-Bonnet Theorem.

Another example is the operator D = d + d∗ on forms on a 2n-dimensional manifold, this
time mapping the self-dual to the anti-self-dual forms. This time the Atiyah-Singer Index
Theorem yields the equation (called the Hirzebruch Signature Theorem)

Sign (M) =

∫
M

L,

where Sign(M) is signature of the manifold, and L is the Hirzebruch L-polynomial applied
to the Pontryagin forms.

Different examples of operators yield other classical theorems, such as the Hirzebruch-
Riemann-Roch Theorem.

3. Bott Periodicity = Thom Isomorphism = Index Theory

3.1. Vector bundles over the sphere. Consider the following examples of complex line
bundles over the sphere S2 = CP 1. Note that complex line bundles over the sphere can be
classified (up to isomorphism) by their clutching functions f : S1 → C. That is, since the
upper and lower hemispheres are contractible and thus all vector bundles are trivial over
these spaces, we may regard every line bundle as a copy of C over each hemisphere along
with a gluing transformation (ie multiplication by a complex-valued function, the clutching
function) over the equator. It is possible to show (and certainly believable) every such
clutching function is homotopic to the function of the form f (z) = zj, with j ∈ Z. The
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exponent of the clutching function gives the Chern number of the line bundle, which is the
same as the Euler number of the realization of the line bundle, which is the same as the
integral of the first Chern class (obtained from the curvature form). Thus, the (first) Chern
number classifies the complex line bundle up to isomorphism.

(1) Tangent Bundle to S2. Since S2 (in fact, all oriented surfaces), can be given the
structure of a complex manifold, and thus TS2 → S2 is a complex vector bundle. Its
Chern class is the standard Euler class, so the Chern number of this bundle is two.
Note that the unit tangent bundle SS2 → S2 is SO (3) = RP 3.
To figure out the clutching function, pretend first that we have the chosen the stan-
dard metric on S2. Imagine that we have a tangent vector to the north pole, and we
parallel translate it to the south pole via the geodesic whose initial velocity is that
tangent vector. Next, take another geodesic through the north pole that makes an
angle θ (counterclockwise) with the first geodesic at the north pole. Then if we par-
allel translate the original vector along this new geodesic, observe that the resulting
vector at the south pole makes an angle 2θ with the vector that was parallel trans-
lated along the original geodesic. (It helps to visualize what happens when θ = π

2
.

Thus the clutching function (which identifies the copy of C at the north pole with a
copy of C at the south pole) satisfies f

(
eiθz

)
= e2iθz, so the function is f (z) = z2.

In general, the exponent of the clutching function gives the Chern number of the line
bundle. Thus, the Chern number classifies the line bundle up to isomorphism.

(2) The “Canonical Line Bundle” or “Tautological Line Bundle” or “Hyper-
plane Bundle” H over CP 1 = S2.

The canonical line bundle of any complex projective space CP n is the union of the
set of all complex lines through the origin in Cn+1, and the projection to CP n is given
by projecting the elements of a complex line through the origin to the complex line
itself, thought of as an element of CP n. The natural complex and smooth structure
of this bundle is defined in a natural way, using the ways that the lines are embedded
in Cn+1. In other words, given a complex line [z0, ..., zn] ∈ CP n, the fiber is the set
of points (z0, ..., zn) ∈ Cn+1 that project to that line. The case n = 1 yields the
canonical line bundle H over CP 1 = S2. We let the trivialization near the north pole
to be [z, 1] = [z0, z1], the points of the line bundle over a point [z, 1] in the northern
hemisphere be the points (zw, w) ∈ C2, where w ∈ C. These points correspond to
[1, 1/z] near the south pole, where the elements of the line bundle are (w, w/z) ∈ C2

with w ∈ C, so that the gluing transformation at z ∈ S1 is multiplication by z. Since
the clutching function is f (z) = z, the Chern number of this line bundle is 1 (or −1,
if one uses [z, 1] for the southern hemisphere). Traditionally, in the literature one
uses [z, 1] for the southern hemisphere, and thus the dual H∗ has Chern number 1.

(3) The “Clifford multiplication line bundle” over S2. Consider the following line
bundle generated by Clifford multiplication on the spinor bundle over S2. We will
take the line bundle to be S+ over northern hemisphere and S− over the southern
hemisphere, with Clifford multiplication being the gluing transformation over the
equator. In this case, S = S+ ⊕ S− = C2, and Clifford multiplication by v =
(v1, v2, v3) ∈ S2 is matrix multiplication by

v1

(
0 −1
1 0

)
+ v2

(
0 i
i 0

)
+ v3

(
i 0
0 −i

)
=

(
iv3 −v1 + iv2

v1 + iv2 −iv3

)
.
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On the equator v3 = 0, S+ = span

(
1
0

)
, S− = span

(
0
1

)
, and the isomorphism at

(x, y, 0) is multiplication by x + iy, so the clutching function is f (z) = z, and thus
this line bundle is topologically the same as H∗, and its Chern number is 1.

(4) The complex exterior bundle ΛC (TM). (A similar calculation can be done on
any complex manifold). Over each point, we identify the tangent space with C, and
ΛCC is the complex vector space with basis {1, dz}, and we consider the Clifford
action of Cl (TM) defined by c (v1, v2) = (v1 + iv2) dz ∧− (v1 − iv2) dzy, which maps
Λeven

C (TM) = C to Λodd
C (TM) = Cdz. This is the same as

c (v1, v2) = v1

(
0 1
−1 0

)
+ v2

(
0 i
i 0

)

on span

(
1
dz

)
, and this is clearly a Clifford action.

(5) Any other line bundle over S2 is a tensor product of a number of copies of H with
a number of copies of H∗. That is, since H ⊗H∗ is trivial, it is the tensor product
of a number of copies of H, it is the trivial line bundle, or it is the tensor product of
a number of copies of H∗. Note that the Chern number of a tensor product of two
line bundles is simply the sum of the Chern numbers of the individual line bundles,
because the clutching function of a tensor product is the product of the clutching
functions.

(6) Complex vector bundles over S2: More generally, suppose we are given any com-
plex vector bundle of rank n over the sphere S2. As in the line bundle case, since
every such vector bundle is trivial over the hemisphere, the vector bundle is deter-
mined topologically by an isomorphism of two complex vector bundles of rank n over
the equator S1. Thus, the bundle is determined topologically by a homotopy class
of maps from S1 into Gl (n, C), in other words the fundamental group of Gl (n, C).
Since GL (n, C) is homotopic to U (n),

π1 (Gl (n, C)) ∼= π1 (U (n)) ∼= π1 (U (1)) ∼= Z.

The second isomorphism is induced by the determinant homomorphism. The fact
that π1U (n) ∼= Z comes from the long exact sequence in homotopy for a fiber bundle.
Clearly π1 (U (1)) = π1 (S1) ∼= Z, and we have the following fiber bundle:

U (n− 1) → U (n)
↓

S2n−1

Thus, the long exact sequence in homotopy is

...πj+1

(
S2n−1

)
→ πj (U (n− 1))→ πj (U (n))→ πj

(
S2n−1

)
→ ...

Since πm (S2n−1) = {0} for m ≤ 2n − 2, we have that πj (U (n− 1)) ∼= πj (U (n))
for j < 2n − 2, which implies in particular that π1 (U (n)) = Z for all n ≥ 1. Back
to the equator, we see that every homotopy class of maps from S1 into Gl (n, C) is
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homotopic to

z 7→


zj 0 · · · 0
0 1 · · · 0
...

...
. . . 0

0 0 0 1

 .

Thus, every complex vector bundle over S2 is isomorphic to the direct sum of a line
bundle and a trivial bundle. Thus, every complex vector bundle over S2 is isomorphic
to the direct sum of a tensor product of a number of copies of H with a number of
copies of H∗, with a trivial bundle. Said differently, H (or the Clifford multiplication
line bundle) generates the set of all vector bundles over S2 using the operations ∗
(dual), ⊗, and ⊕.
Notice that if we were trying to classify complex vector bundles over higher dimen-
sional spheres (Sk with k > 2), we would need to be looking at higher homotopy
groups πk−1 (U (n)), which is pretty darn hard. However, if n ≥ k

2
, then

πk−1 (U (n)) =

{
{0} if k is odd
Z if k is even

(This is a result of Bott periodicity – as you increase n with k fixed, the homotopy
group stabilizes, so these are actually the stable homotopy groups.) Thus the group
of stable isomorphism classes of complex vector bundles over Sk (stable means that
we mod out by the operation of direct-summing with trivial bundles) is

{complex vector bundles over Sk} mod isomorphism, mod stability

↔
{
{0} if k is odd
Z if k is even

3.2. Thom Isomorphism in de Rham Cohomology.

Proposition 3.1. (Poincaré Lemma for compact supports) The compactly supported (de
Rham) cohomology of Rn satisfies

Hk
c (Rn) ∼=

{
R if k = n
0 otherwise

In fact, the generator of Hn
c (Rn) is the Thom form Φ, a bump function times the volume

form whose total integral is 1. If we let π : Rn → {0}, the isomorphism is

π∗ = π! : Hn
c (Rn)→ H0 ({0}) = R,

which is given by integration (over the fiber), and the inverse i! : R→Hn
c (Rn) is given by

multiplying the constant by Φ. Notice that this is the same as

i! (u) = [π∗u ∧ Φ] ,

where u is a constant (function on {0}). The notation comes from the inclusion map i :
{0} → Rn (the zero section).

Proposition 3.2. (Thom Isomorphism for Cohomology) If M is a compact manifold and if
π : E →M is an oriented real vector bundle of rank r, then

Hk
c (E) ∼= Hk−r (M) .
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In fact there exists a closed r-form Φ (Thom form) on E that restricts to a bump volume
form on each fiber such that the inverse i! of the “integration over the fiber” map

π∗ = π! : Hk
c (E)→ Hk−r (M)

satisfies
i! ([u]) = [π∗u ∧ Φ] .

In particular, [Φ] = i! ([1]). The cohomology class [Φ] is called the Thom class of E.

3.3. K-theory. Let M be a compact manifold (actually compact Hausdorff is sufficient).
We define the K-theory K (M)

K (M) = {formal differences of vector bundles over M}
mod isomorphisms of vector bundles

mod direct summing with trivial bundles.

This is an abelian group under the direct sum operation, and in fact you can also define a
multiplication (we’ll get to that later). An interesting observation: it is always possible to
embed any vector bundle E → M in Euclidean space (as a vector bundle), so in fact there
always exists a complementary vector bundle E ′ such that E ⊕ E ′ is trivial. Therefore, for
any two vector bundles E and F over M ,

[F − E] = [F ⊕ E ′ − E ⊕ E ′] ,

so one may always take the second bundle to be trivial. So you can think of K-theory as
stable isomorphism classes of vector bundles. Next, observe that

K (pt) = Z,

where the integer is the difference in ranks of the two bundles (ie dimensions of the vector
spaces) — that is, the generator of K (pt) is [C− {0}]. Also, observe that every complex
vector bundle over the circle S1 is trivial, so

K
(
S1

)
= Z.

On the other hand, K (S2) = Z⊕ Z, where the standard generator of the second copy of Z
is [H − 1], where H is the canonical line bundle and 1 is the trivial bundle.

Note that homotopy equivalent spaces have the same K-theory.

Given a closed manifold M and a point pt ∈ M , we define the reduced K-theory K̃ (M)
as the kernel of the homomorphism

K (M)→ K (pt) = Z
given by restricting bundles over M to pt ∈M . In other words,

K̃ (M) = {formal differences of vector bundles of the same rank over M}
mod isomorphisms of vector bundles

mod direct summing with trivial bundles.

So K̃ (pt) = {0}, K̃ (S1) = {0}, and K̃ (S2) = Z.
Given a compact pair (X, A) (meaning X is compact Hausdorff, A is a closed subspace),

then we define the relative K-theory of the pair as

K (X,A) = K̃ (X/A) ,
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where X/A means you have taken the quotient space by identifying A to a point. Thus, if
pt ∈M , then

K (X, pt) = K̃ (X) .

Also,

K (X, ∅) = K (X) .

If you think about it, there are other equivalent ways to understand relative K-theory:

K (X, A) = {formal differences of vector bundles over X that are isomorphic over A}
mod isomorphisms of vector bundles

mod direct summing with trivial bundles.

Let the double D (X,A) of X along A be defined as the disjoint union of two copies of X
whose copies of A are identified. Then

K (X, A) = kernel of the homomorphism

K (D (X, A)) → K (X) ,

where the homomorphism is given by restricting the vector bundles to one copy of X in the
double.

One typical way of exhibiting an element of K (X, A) is as

[E, F, φ] ,

where E and F are vector bundles over X, and φ : E|A → F |A is an isomorphism.
Note that if Bn is an n-dimensional ball with boundary Sn−1, we have

K
(
Bn, Sn−1

)
= K̃

(
Bn/Sn−1

)
= K̃ (Sn) .

Finally, we define compactly supported K-theory as

Kcpt (M) = K̃
(
M+

)
= K

(
M+,∞

)
,

where M+ is the one-point (∞) compactification of M . If M is compact, M+ is the union
of M and an isolated point, so Kcpt (M) = K (M). Note that one may regard

Kcpt (M) =

{
formal differences of vector bundles over M
that are isomorphic outside a compact set

}
mod isomorphisms of vector bundles

mod direct summing with trivial bundles.

Thus,

Kcpt (Rn) = K
(
Bn, Sn−1

)
= K̃ (Sn) .

If E →M is a vector bundle over a compact manifold, then

Kcpt (E) = K (B (E) , S (E)) ,

where B (E) denotes the unit ball bundle of E and S (E) denotes the unit sphere bundle.
Thus, elements of Kcpt (E) can be expressed as

[F1, F2, β] ,
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where Fj → B (E) is a vector bundle for j = 1, 2 such that β : F1|S(E) → F2|S(E) is a bundle
isomorphism.

Because of these descriptions, it is easy to see that

Kcpt (Rn) = K̃ (Sn)

= K
(
Bn, Sn−1

)
=

{
[E, F, β] : E and F are vector bundles over Bn

that are isomorphic via β on Sn−1

}
mod

{
stable

isomorphism

}
.

Observe that every vector bundle over Sn is a pair of complex vector bundles E → Bn,
F → Bn over two copies of Bn (with opposite orientations but whose orientation on Sn is
the same) such that E|Sn−1 and F |Sn−1 are isomorphic. Thus,

Kcpt (Rn) = K̃ (Sn) = K
(
Bn, Sn−1

)
= {stable isomorphism classes of vector bundles over Sn}

In particular,

Kcpt

(
R2

)
= K̃

(
S2

)
= K

(
B2, S1

)
= Z, (3.1)

with generator

[H − 1] =
[
H,1, multiplication by z ∈ S1

]
=

[
S+, S−, c

]
,

as explained in Section 3.1. The comments at the end of that section imply that

Kcpt

(
Rk

)
= K̃

(
Sk

)
= K

(
Bk, Sk−1

)
=

{
{0} if k is odd
Z if k is even

Lemma 3.3. Let π : E → M be a smooth real vector bundle over a closed manifold M .
Then every element of Kcpt (E) can be represented by

[π∗F1, π
∗F2, σ] ,

where F1 and F2 are vector bundles over M and isomorphic via σ outside a compact set, and
where σ : π∗F1 → π∗F2 is homogeneous of degree zero on the fibers.

K-theory is a generalized cohomology theory, in that it satisfies all of the axioms of coho-
mology except the dimension axiom.

We define multiplication in relative K-theory as follows. Given [V0, V1, α] , [W0, W1, β] ∈
K (X, A), we define

[V0, V1, α] · [W0, W1, β] =[
(V0 ⊗W0)⊕ (V1 ⊗W1) , (V1 ⊗W0)⊕ (V0 ⊗W1) ,

(
α⊗ 1 −1⊗ β∗

1⊗ β α∗ ⊗ 1

)]
,

where ∗ denotes an adjoint with respect to Hermitian metrics on the bundles. (We may
alternatively replace adjoint by inverse.)
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3.4. Other K-groups. We define the smash product A∧B of two topological spaces A and
B with basepoints a and b as

A ∧B := A×B� (A× {b} ∪ {a} ×B) .

The smash product is commutative and associative, since

(A ∧B) ∧ C = [A×B� (A× {b} ∪ {a} ×B)]× C� [(A ∧B)× {c} ∪ {(a, b)} × C]

= [A×B × C� (A× {b} × C ∪ {a} ×B × C)] � [(A ∧B)× {c} ∪ {(a, b)} × C]

= (A×B)× C� (A× {b} × C ∪ {a} ×B × C ∪ A×B × {c}) .

Note that if A and B are compact, the smash product of A and B is the one-point compact-
ification of (A� {pt})× (B� {pt}). Also, observe that if we let ∞A and ∞B be the (added)
basepoints in the one-point compactifications of A and B,

A+ ∧B+ = A+ ×B+�
(
A+ × {∞B} ∪ {∞A} ×B+

)
= (A×B ∪ {∞A} ×B ∪ A× {∞B} ∪ {∞A} × {∞B})

� ({∞A} ×B ∪ A× {∞B} ∪ {∞A} × {∞B})
= (A×B)+

We define the reduced suspension ΣA of a topological space A with basepoint a as

ΣA := S1 ∧ A,

where the basepoint on S1 can be arbitrary. This is the same as the topological suspension
s (A) mod the images of the basepoint of the suspended space. These two suspensions are
homotopy equivalent. In other words,

ΣA = [0, 1]× A� ({0} × A ∪ {1} × A ∪ [0, 1]× {a})
= s (A) � ([0, 1]× {a})

Note that
S1 ∧ Sj = Sj+1

for each nonnegative integer j. If A+ = A ∪ {pt} denotes the one-point compactification of
a compact Hausdorff space A, observe that

Σ
(
A+

)
= s (A) with endpoints identified

= [0, 1]× A� ({0} × A ∪ {1} × A)

' s (A) · S1

' (ΣA) · S1. (3.2)

The last line means that this space is homotopic to the standard suspension s (A) glued to
a circle.

For i ∈ N, we define the i-fold reduced suspension ΣiA of a topological space A with
basepoint a by

Σ1A : = ΣA

ΣiA : = Σ
(
Σi−1A

)
for i > 1.

This implies that
ΣjA = Sj ∧ A

for each j ∈ N.



10 K. RICHARDSON

For each i ∈ N, we now define K−i (X) , K−i (X, Y ), and K̃−i (X), where X is a compact
Hausdorff space and Y is a closed subspace, and X+ is the one-point compactification.

K−i (X) : = K̃
(
Σi

(
X+

))
K−i (X, Y ) : = K̃

(
Σi (X�Y )

)
K̃−i (X) : = K̃

(
Σi (X)

)
These definitions imply that

K̃−i (X) = K̃
(
Si ∧X

)
K−i (X, Y ) = K̃−i (X�Y )

K−i (X, ∅) = K̃
(
Σi

(
X+

))
= K−i (X)

K̃−i
(
X+

)
= K−i (X)

Note also that if X is compact, then

K−1 (X) = K̃−1
(
X+

)
= K̃

(
Σ

(
X+

))
= K̃

(
(ΣX) · S1

)
= K̃ (ΣX)

= K̃−1 (X) = K−1 (X, pt) ,

where the second to last line is true because all complex vector bundles of a given rank over
the circle are isomorphic. Equivalently, identifying two points on a compact space does not
change the reduced K-theory. Also, note that

K−i (X) = K̃
(
Σi

(
X+

))
= K̃

(
Si ∧

(
X+

))
= K̃

(
Ri+ ∧

(
X+

))
= K̃

((
Ri ×X

)+
)

.

For example,

K−1 (pt) = K̃ (Σ (pt ∪ pt2)) = K̃
(
S1

)
= {0} .

For another example,

K−1
(
S1

)
= K̃

(
S2

)
= Z,

and more generally

K−k (pt) = K̃
(
Sk ∧ (pt ∪ pt2)

)
= K̃

(
Sk

)
= K

(
Bk, Sk−1

)
=

{
{0} if k is odd
Z if k is even

Furthermore, if X and Y are spaces with basepoints, then

K̃−i (X × Y ) ∼= K̃−i (X ∧ Y )⊕ K̃−i (X)⊕ K̃−i (Y )

Given complex vector bundles E → A and F → B over base-pointed spaces A and B,
the exterior tensor product E ⊗ F lives naturally over A × B. There is a natural map
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from K̃ (A×B) to K̃ (A)⊕ K̃ (B), given by restricting to one factor at a base point of the

other. The kernel of this map is the exactly K̃ (A ∧B) by construction. To obtain a map

from K̃ (A×B) to K̃ (A ∧B), first take an equivalence class of formal differences of vector
bundles [V1 − V2] of the same rank over A×B, and then restrict this difference to {a} ×B.
Then extend the result trivially to obtain [V a

1 − V a
2 ] over A×B. Similarly, obtain

[
V b

1 × V b
2

]
for the basepoint b ∈ B. Finally, let

[
V ab

1 − V ab
2

]
denote the restriction of [V1 − V2] to

{a}×{b} and then extended trivially to A×B. We define the map K̃ (A×B)→ K̃ (A ∧B)
by

[V1 − V2] 7→ [V1 − V2]
∧ :=

[
V1 − V a

1 − V b
1 + V ab

1 − V2 + V a
2 + V b

2 − V ab
2

]
.

The right hand side clearly is 0 over {a}×B and A×{b}, so it is defined on A∧B. Observe
that it is really not necessary to add V ab

1 −V ab
2 , since adding and subtracting a trivial bundle

does not change the class. Another way to say this is that the exact sequence below splits if
the spaces are pointed.

K̃ (A)⊕ K̃ (B) = K̃ (A ∨B)→ K̃ (A×B)→ K̃ (A ∧B)→ 0 (3.3)

We thus obtain a pairing

K̃ (A)⊗ K̃ (B) → K̃ (A ∧B) , defined using

[E]⊗ [F ] 7→ [E � F ]∧ =
[
E � F − Ea � F − E � F b + Ea � F b

]
.

This map is actually a ring homomorphism. We now apply this pairing to A = Si ∧X and
B = Sj ∧ Y . Since (

Si ∧X
)
∧

(
Sj ∧ Y

)
= Si+j ∧ (X ∧ Y ) ,

we obtain a pairing of the reduced K-theory groups:

K̃−i (X)⊗ K̃−j (Y )→ K̃−i−j (X ∧ Y )

Then you replace X and Y with their one-point compactifications, and you get corresponding
pairings of nonreduced K-theory:

K−i (X)⊗K−j (Y )→ K−i−j (X × Y ) ,

using the fact that X+ ∧ Y + = (X × Y )+. (Note that I see no need for base points in the
pairing above.) Recalling that

K−i (X) = K̃
((

Ri ×X
)+

)
,

we can make sense of the pairing as follows. Given an equivalence class [E] of formal differ-

ences of vector bundles of the same rank over (Ri ×X)
+
, you can just think of [E] as a differ-

ence of vector bundles over Ri×X that are isomorphic outside a compact set. Similarly, let
[F ] be an equivalence class of formal differences of vector bundles over Rj×Y that are isomor-
phic outside a compact set. Then we form the class [E � F − E∞ � F − E � F∞ + E∞ � F∞]
over Ri+j ×X × Y , where for example E∞ denotes the isomorphism class of E at ∞. Note
that this class has the property that the bundles are isomorphic outside a compact set in
Ri+j ×X × Y , so that the class lives in K−i−j (X × Y ). Also, since E∞ � F∞ is zero as a
class, it could be deleted.

We apply this when X and Y are points to get:
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Proposition 3.4. The pairing K−i (pt) ⊗K−j (pt) → K−i−j (pt) makes K−∗ (pt) a graded
ring. More generally, if (X, pt) is a pointed space, the pairing

K−i (pt)⊗K−j (X)→ K−i−j (X)

makes K−∗ (X) a graded module over K−∗ (pt).

Tracing through the constructions above, we can understand the pairing as follows. First,
note that

K−i (pt) = K̃
((

Ri
)+

)
= K̃

(
Si

)
, and

K−j (X) = K̃
((

Rj ×X
)+

)
.

Next, given an equivalence class [E] of formal differences of vector bundles of the same
rank over Si = Ri ∪∞ and an equivalence class [F ] of formal differences of vector bundles

of the same rank over (Rj ×X)
+

= Rj × X ∪ ∞′, the pairing produces the equivalence
class

[
E � F − E∞ � F − E � F∞′

+ E∞ � F∞′]
over Ri+j ×X ∪∞, where ∞ and ∞′ are

identified.

3.4.1. Another approach to understanding K−1. Suppose that X is a compact Hausdorff
space. Then consider the set

K̂−1 (X) =
⋃
n∈N

Gl (n, C (X)) �
⋃
n∈N

Gl (n, C (X))0 ,

where the subscript 0 denotes the connected component of the identity. We will compare

K̂−1 (X) to

K−1 (X) = K̃
(
S1 ∧X+

)
= K̃

(
(R×X)+)

.

Observe that K̂−1 (X) is the set of homotopy classes of isomorphisms of trivial complex
vector bundles over X. Note that a bundle is trivial if and only if it extends to the cone over
X. An isomorphism of trivial complex vector bundles over X can be thought of a bundle
over the standard suspension of X, where the gluing map is the isomorphism; every bundle
over the standard suspension can be constructed this way. Thus

K̂−1 (X) = K̃ (s (X)) .

Since s (X) is homotopy equivalent to the reduced suspension ΣX = S1 ∧X, we have

K̂−1 (X) = K̃
(
S1 ∧X

)
= K̃

((
S1 ∧X

)
· S1

)
,

where · means glued at a point, which is true since the reduced K-theory of the circle is
trivial. But since (S1 ∧X) ·S1 is homotopy equivalent to S1 ∧ (X+), as seen in (3.2), we get

K̂−1 (X) = K̃
(
S1 ∧X+

)
= K−1 (X) .
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3.5. Bott Periodicity. Using (3.1) and Section 3.4, we have:

Proposition 3.5.

K−2 (pt) = K̃
(
S2

)
= Kcpt

(
R2

)
= K

(
B2, S1

)
= Z = K0 (pt) ,

with generator

[H − 1] =
[
H,1,multiplication by z ∈ S1

]
=

[
S+, S−, c

]
.

We now use this fact to prove the following Lemma:

Lemma 3.6. (Product Theorem) If X is a compact Hausdorff space, then

K̃
(
X × S2

) ∼= K̃ (X)⊗ K̃
(
S2

) ∼= K̃ (X) .

Proof. There is a 1-1 correspondence between complex vector bundles over X×S2 and pairs
[E, f ] where E is a complex vector bundle over X and the “clutching function” f : E×S1 →
E is an S1-parameter family of bundle automorphisms. The idea is that every vector bundle
over X × S2 is a pair of vector bundles over X ×D2 that is “clutched” along the boundary.
First any such clutching function is homotopic (') to a Laurent polynomial of the form∑
|j|≤n

aj (x) zj for some n. Next, one proves that [E, z−mq] ' [E, q] ⊗ (H∗)⊗m, so it suffices

to consider polynomials of the form
∑

0≤j≤n

aj (x) zj. Next, one can show that if q is one such

polynomial, then [E, q]⊕[nE,1] ' [(n + 1) E, a (x) z + b (x)], where a (x) and b (x) are bundle
maps. (Basically, we use the trick that [H ⊗H,1] ' [H, H].) By doing another homotopy,

we can reduce to the case
[
Ẽ, z + B (x)

]
, where B (x) is an invertible bundle map. Then, one

can perform another homotopy of this bundle to
[
Ẽ+,1

]
⊕

[
Ẽ−, z

]
= Ẽ+ ⊕ Ẽ− ⊗H, where

Ẽ+, respectively Ẽ−, is the direct sum of eigenspaces of Ẽ corresponding to eigenvalues
of B (x) outside the unit circle S1, respectively inside S1. This shows that every virtual

complex vector bundle over X × S2 is stably homotopic to an element of K̃ (X) ⊗ K̃ (S2).

Since the map K̃ (X) ⊗ K̃ (S2) → K̃ (X × S2) given by exterior tensor product is injective
and surjective, the result follows. �

Theorem 3.7. (Bott periodicity, complex case) The following sequence of maps

K̃ (X)
[H−1]�·→ K̃

(
S2 ×X

) ∧→ K̃
(
S2 ∧X

) ∼= K̃ (s (s (X)))

is a ring isomorphism, for all compact Hausdorff spaces X.

Proof. The first map comes from the proposition and lemma above, and the second map
comes from the isomorphism in (3.3):

K̃
(
S2 ×X

) ∼= K̃
(
S2 ∧X

)
⊕ K̃

(
S2

)
⊕ K̃ (X) .

The product theorem shows that [H − 1] � · is an isomorphism, and the projection ∧ is
1-1, by construction. Recall that [E � F ]∧ =

[
E � F − Ea � F − E � F b + Ea � F b

]
is the

reduced external product, which is a 1-1 map from K̃ (A)⊗ K̃ (B) onto K̃ (A ∧B) . �
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Corollary 3.8. (restatement of Bott periodicity, complex case)Module multiplication by
[H − 1] = [S+, S−, c] is an isomorphism

K−i (X)→ K−i−2 (X)

for all compact Hausdorff spaces X and all i ≥ 0. If X is a pointed space, then a similar
isomorphism holds in reduced K-theory.

Proof. K−i (X) = K̃ (Si ∧X+) = K̃ (Si ∧X+), and K−i−2 (X) = K̃ (Si+2 ∧X+) = K̃ (S2 ∧ Si ∧X+).
�

Corollary 3.9. We have the following results: For all k ≥ 0,

K−k (pt) = Kcpt

(
Rk

)
= K̃

(
Sk

)
= K

(
Bk, Sk−1

)
=

{
{0} if k is odd
Z if k is even

,

and in even dimensions, the generator is [S+, S−, c].

Proof. In even dimensions, the map [S+, S−, c]2−dim · is an isomorphism from Kcpt (Rj) to
Kcpt (Rj+2). My the construction of even-dimensional complex spinors,[

S+, S−, c
]
2−dim

·
[
S+, S−, c

]
j−dim

=
[
S+, S−, c

]
(j+2)−dim

.

The result follows. �

There are some nice consequences of Bott periodicity to exact sequences in K-theory.
First, observe the following.

Lemma 3.10. Let (A, X) be a compact pair of pointed spaces, meaning that A is a closed
subspace of the compact Hausdorff space X. Then the set of maps

A ↪→ X → X�A

induces the exact sequence in reduced K-theory:

K̃ (X�A)→ K̃ (X)→ K̃ (A) ,

which in turn yields a long exact sequence

...→ K̃ (s (X�A))→ K̃ (s (X))→ K̃ (s (A))→ K̃ (X�A)→ K̃ (X)→ K̃ (A) .

Proof. If B ⊆ Y and B ⊆ Z, we define the notation Y ∪A Z to mean the union of disjoint
copies of Y and Z that are identified along B. Observe that if c (Y ) denotes the cone on Y ,
then X ∪A c (A) is homotopy equivalent to X�A. The first exact sequence comes from the
sequence of inclusions A ↪→ X ↪→ X ∪A c (A). To get the long exact sequence, consider the
sequence of inclusions:

A ↪→ X ↪→ X ∪A c (A) ↪→ X ∪A c (A) ∪X c (X) ↪→ c (X) ∪X c (X)

Note that as before X ∪A c (A) is homotopy equivalent to X�A, X ∪A c (A) ∪X c (X) is
homotopy equivalent to s (A), and c (X) ∪X c (X) = s (X). Using the fact that s (X�A) =
s (X) �s (A), the result follows. �

Corollary 3.11. If (A, X) is a compact pair, then the K-theory groups form the following
exact sequence:

K0 (X�A) → K0 (X) → K0 (A)
↑ ↓

K−1 (A) ← K−1 (X) ← K−1 (X�A)
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If (A, X) is a compact pair of pointed spaces, then we have a similar exact sequence in reduced
K-theory.

Proof. For every pointed compact Hausdorff space Y , K̃ (s (Y )) = K̃ (S1 ∧ Y ) = K̃−1 (Y ).
The reduced K-theory sequence follows from Bott periodicity and the lemma above. Replac-
ing each space with its one-point compactification yields the K-theory exact sequence. �

3.6. Thom Isomorphism in K-theory. In the following, if V →M is an even dimensional
vector bundle over M that is spinc, let S (V ) = S+ (V )⊕S− (V ) be the corresponding complex
spinor bundles over M , and let c denote Clifford multiplication by vectors in V .

If V → M is any even dimensional vector bundle over M (not necessarily spinc), let
Cl (V ) = Cl+ (V )⊕Cl− (V ) be the corresponding bundle of complex Clifford algebras, and
again let c denote the Clifford multiplication by vectors in V .

Note that if π : E → X is an oriented real vector bundle and if [π∗V, π∗W, σ] is a class in
Kcpt (E) = K (B (E) , S (E)) and if [F ] ∈ K (X), then the multiplication in Kcpt (E) gives

[π∗V, π∗W, σ] · π∗ [F ] = [π∗V ⊗ F, π∗W ⊗ F, c⊗ 1] .

Theorem 3.12. (Thom Isomorphism in K-theory) Suppose that π : E → X is an oriented
real vector bundle of even dimension over a closed manifold X.

(1) If E is spinc, then there is an (additive) isomorphism

is! : K (X)→ Kcpt (E)

given by

is! (u) = s (E) · π∗u,

where

s (E) =
[
π∗S+ (E) , π∗S− (E) , c

]
∈ Kcpt (E) = K (B (E) , S (E)) .

(2) There is always an (additive) isomorphism

iδ! : K (X)⊗Q→ Kcpt (E)⊗Q

given by

iδ! (u) = δ (E) · π∗u,

where

δ (E) =
[
π∗Cl+ (E) , π∗Cl− (E) , c

]
∈ Kcpt (E) = K (B (E) , S (E)) .

Proof. By Corollary 3.9, the spin version of this proposition follows immediately from Bott
periodicity if X is instead a contractible closed subset, because Clifford multiplication gen-
erates the compactly supported K-theory of R2m. Now since every closed manifold can be
written as the union of a finite number of closed contractible sets, to prove the spinc part
it suffices to show that the result can be extended to a union of N contractible closed sets.
We prove this using induction; we have already shown the case N = 1. Now, suppose the
result is true for the base being a union of N − 1 or less contractible closed sets. Letting A
denote the union of the first N −1 sets and B denote the N th set, we use the Mayer-Vietoris
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sequence, and then note that multiplication by the restriction of s (E) gives a morphism of
exact sequences.

...→ K−i
cpt (A ∪B) → K−i

cpt (A)⊕K−i
cpt (B) → K−i

cpt (A ∩B) → K−i+1
cpt (A ∪B) → ...

↓ ↓ ↓ ↓
...→ K−i

cpt (E|A∪B) → K−i
cpt (E|A)⊕K−i

cpt (E|B) → K−i
cpt (E|A∩B) → K−i+1

cpt (E|A∪B) → ...

Using the Five-lemma and the induction hypothesis, we get the isomorphism on A ∪ B,
since multiplication by the restriction of s (E) on the other pieces is an isomorphism by the
induction hypothesis.

Next, if E is of real rank 2m over X but not spinc, we do the same thing over a closed
contractible set C ⊆ X with the homomorphism that is multiplication by

δ (E|C) =
[
S+ ⊗ S∗, S− ⊗ S∗, c⊗ 1

]
=

[
S+, S−, c

]
· [S∗]

= 2m
[
S+, S−, c

]
= 2ms (E|C) .

Thus, using the same argument, we obtain an isomorphism up to torsion. �

3.7. Dirac operators and Index Theory. Note that if L : Γ (M, E) → Γ (M, F ) is a
zeroth order differential operator with principal symbol σ (L), then if π : T ∗M → M is the
tangent bundle, then

[π∗E, π∗F, σ (L)]

represents a class in Kcpt (T ∗M). Furthermore, any two such operators represent the same
class if and only if the principal symbols are stably homotopic.

Suppose M is a compact spinc manifold, and let P : Γ (M, E)→ Γ (M, F ) be any elliptic

pseudodifferential operator. Then P0 = (1 + P ∗P )−1/2 P has the same index and same
symbol class σ ∈ Kcpt (TM), but it is zeroth order. By the Thom Isomorphism,

σ = s (TM) · π∗u,

where u ∈ K (M). Writing u = [V1 − V2] , we see

σ =
[
π∗S+ (E)⊗ V1, π

∗S− (E)⊗ V1, c⊗ 1
]

−
[
π∗S+ (E)⊗ V2, π

∗S− (E)⊗ V2, c⊗ 1
]
.

Thus, if D+
V denotes the spinc Dirac operator twisted by the vector bundle V , we have that

P ⊕D+
V1

is stably homotopic to D+
V2

. Thus,

index (P ) = index
(
D+

V1

)
− index

(
D+

V2

)
=

{
(ch (V2)− ch (V2)) · Â (M)

}
[M ] .

So the Atiyah-Singer Index Theorem reduces to a calculation of the index of Dirac operators.
If M is not spinc, a similar calculation can be done with δ (TM) and the signature operator.

4. Dirac operators in Global Analysis

One important result concerning the Dirac operator is the Bochner-Lichnerowicz formula
for the square of the Dirac operator.
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