
Are Deligne-Lusztig representations
Deligne-Lusztig?

Except when they are complex?

1. Representation theory

Let K be a (connected) compact Lie group, and let π an irreducible
representation of K. This means that π is finite-dimensional, i.e. π
is a homomorphism from K to GL (V ), where V is a finite dimen-
sional (complex) vector space. It makes sense to talk about Θπ (h) =
Tr (π (h)), a scalar-valued function. It turns out that this character-
izes the representation π up to unitary equivalence, ie. if π′ is another
irreducible representation on a space V ′, and it Θπ′ = Θπ then there
is an isomorphism T : V → V ′ such that π′ (g) ◦ T = T ◦ π (g) for all
g ∈ K. We call Θπ is called the character of π. This function is a
class function, ie. it is constant on conjugacy classes. However it need
not be multiplicative, so it is not necessarily a homomorphism. We
have in general

Θπ (k) Θπ (k′) = deg (π)

∫
K

Θπ

(
kuk′u−1

)
du.

So, we understand Θπ, hence π, if we can evaluate Θπ on a set of
conjugacy class representatives. If K contains a maximal torus T (a
subgroup isomorphic to a product of S1s), then every element of K lies
in some conjugate of this torus. So if, we understand which functions
on T are characters, then we understand the representation theory.

Examples:

• K = SO2 (r)

=
{
G ∈M2 (R) : GGT = 1 and detG = 1

}
= S1 =

{(
cos θ sin θ
− sin θ cos θ

)}
↔ eιθ

This has only one-dimensional irreducible representations, which
are z ∈ S1 7→ zn for fixed n in Z. In terms of actions, K acts

on V = C by letting

(
cos θ sin θ
− sin θ cos θ

)
act by multiplication

by einθ. Then Θπ (z) = zn in this case.
• K = SU2 (C) = {g ∈M2 (C) : det g = 1 and g∗g = 1}, which

is isomorphic to SO3 (R), which is topologically RP3. It is not

abelian. A maximal torus looks like T =

{(
z 0
0 z−1

)
: z ∈ S1

}
∼=

1
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S1. The irreducible representations of SU2 (C) are realized in
C [x, y]hom = {homogeneous polynomials in 2 variables}. Specif-
ically, we act by transposition:(

a b
c d

)−1
f (x, y) = f (ax+ by, cx+ dy) .

If you fix the degree d to get Vd, then this is a (d+ 1)-dimensional
irreducible representation (basis xd, xd−1y, ..., yd ). The matrix
in this basis is a diagonal matrix with z−i+j along the diagonal.
So

Θπ (z) = z−d + z−d+2 + ...+ zd

=
zd+1 − z−(d+1)

z − z−1

This character is a sum of terms of various weights, and the
highest weight is d. The denominator is the difference of the
eigenvalues, the Weyl denominator. These are class functions
on SU2 (C).

Next time: Let’s ‘geometrize’ in the ‘algebro’ sense, working with
algebraic groups over C and use Weyl’s unitary trick.

Complexifying: SU2 (C) 7→ SL2 (), because su2 (C)⊗R C = sl2 (C).

1.1. Some questions that came up. What’s an irreducible represen-
tation? A representation is a linear action of a group G on a (complex)
vector space V . That is, it is a homomorphism from G to GL (V ).
If G is finite-dimensional, we can think of the codomain and range as
consisting of matrices. Two bad examples:

(1) The rotation representation of SO2 (R) on R2.
(2) The shear representation of R on R2.

On the level of actions, the second is t

(
x
y

)
=

(
x+ ty
y

)
.

These are bad in different ways:
The rotation representation has no simultaneous eigenvectors, i.e.

there no vector v such that gv = λ (g) v for all g ∈ G, so it’s irreducible.
But there are complex simultaneous eigenvectors. Specifically,(

cos θ sin θ
− sin θ cos θ

)(
1
±i

)
= e±iθ

(
1
±i

)
.

We say this representation is irreducible but not absolutely irre-
ducible because we make it reducible by changing scalars. This isn’t
a problem if the field is algebraically closed. Also if the characteristic
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is zero, it also avoids other problems. This why we work over C. On
the level of matrices, (

cos θ sin θ
− sin θ cos θ

)
isn’t diagonalizable over R. But

Int

(
1 1
i −i

)−1((
cos θ sin θ
− sin θ cos θ

))
=

(
1 1
i −i

)−1(
cos θ sin θ
− sin θ cos θ

)(
1 1
i −i

)
=

(
eiθ 0
0 eiθ

)
.

On the other hand, the shear representation has an invariant vector(
1
0

)
; but only one (up to scaling). Even passing to C doesn’t give

more eigenvalues. Unlike the rotation representation, where we could
write

C2 = C
(

1
i

)
⊕ C

(
1
−i

)
,

a decomposition that is invariant under rotation (completely re-
ducible case), there is no way to write in terms of the shear rep-
resentation

C2 = C
(

1
0

)
⊕ something invariant,

so we say that this action is reducible but indecomposable. On
the level of matrices, the real number t acts by the matrix(

1 t
0 1

)
,

it’s unipotent. In a crude sense, reducing a representation means
conjugating it so all the matrices are block upper triangular. Decom-
posing a representation means conjugating it so all the matrices are
block diagonal. The representation is irreducible, respectively inde-
composable, if this cannot be done nontrivially.

Unipotence causes reducibility but indecomposability. We try to
avoid it if we want to reduce the study of represention theory to the
study of irreducible representations.

Good news: This never happens for complex representations of com-
pact groups. Any representation of a compact group is completely
reducible.

Some words:
linearly reductive: irreducibility of representations
reductive: how many unipotents? (i.e. few)
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In characteristic zero, both notions are the same.
Eg - additive group of real numbers in not reductive.
Last time, we discussed examples of representations of compact con-

nected Lie groups, and I mentioned Weyl’s unitarian trick: every irre-
ducible representation of a connected compact Lie group is the restric-
tion of a unique holomorphic representation of an associated complex
Lie group. Good: then you can do algebraic geometry on complex Lie
groups.

Example: K = SO2 (R) =
{
g ∈ GL2 (R) : det (g) = 1, gTg = 1

}
is

isomorphic to S1 by eiθ 7→
(

cos θ sin θ
− sin θ cos θ

)
. It’s irreducible rep-

resentations one-dimensional and are z 7→ zn. The complex picture:
G = KC = SO2 (C). (Why is this the right answer? Algebraic groups
... On the level of Lie algebras, so2 (R) ⊗R C ∼= so2 (C), but this only
identifies the complex group up to covers.

so2 (R) =
{
X ∈ gl2 (R) : trX = 0, X +XT = 0

}
.

Then SO2 (C) is abelian, and it’s isomorphic to C×. z 7→
(

1
2

(z + z−1) 1
2i

(z + z−1)
− 1

2i
(z + z−1) 1

2
(z + z−1)

)
(a rational isomorphism). We call C× an algebraic torus. What do the
representations of C× look like? The representation z 7→ zn is the
restriction of the representation z 7→ zn of C×. These are all the holo-
morphic representations of C×. but there are others (eg z 7→ znzm

).
Example: K = SU2 (C) = {g ∈ GL2 (C) : det g = 1, gg∗ = 1} .Note

that su2 (C) = {X ∈ gl2 (C) : trX = 0, X +X∗ = 0} . This is a real,
not complex, vector space. Why not just complexify? su2 (C)⊗RC is a
complex Lie algebra – of what? This is sl2 (C) = {X ∈ gl2 (R) : trX = 0}.
Ruth: the isomorphism from sl2 (C) to su2 (C)⊗RC isX 7→ 1

2
(X + iX)+

1
2i

(X − iX) i.
Last time, we talked about complexification. This is a way of passing

from (compact) connected (real) Lie groups to complex Lie groups. As
follows, given K a compact connected Lie group, its (real) Lie algebra
is k, then let g = k ⊗R C is a complex Lie algebra. For K compact,
there exists a connected complex Lie group G whose Lie algebra is g .
But Lie algebras don’t see covers; so we choose G so that π1G = π1K.
Then G is the complexification of K. This obeys a universal property.

K → H (complex Lie group)
↓ (smooth) ↗ (analytic)

G
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But, for noncompact Lie groups, K → G may have a kernel. For ex-
ample, if K = SO2 (R) =

{
g ∈ GL2 (R) : ggT = 1

}
, then k = so2 (R) ={

X : X +XT = 0
} ∼= R. Then

g = k⊗R C = so2 (C)

=
{
X ∈ gl2 (C) : X +XT = 0

} ∼= C

Among all the complex Lie groups with Lie (G) = C, we pick the one
with π1 (G) = Z, which is G = C×. More explicitly,

G = SO2 (C)

=
{
g ∈ GL2 (C) : ggT = 1, det g = 1

}
Also,

K = SU2 (C) = SU2,C/R (R)

=
{
g ∈ GL2 (C) : det (g) = 1, ggT = 1

}
k = su2 (C)

Last time, k ⊗R C ∼= sl2 (C). Among the complex connected Lie
groups G with Lie algebra sl2 (C), we pick the one with π1G = {1},
namely G = SL2 (C) (not PGL2 (C) ).

Last time: Weyl’s unitarian trick: Every continuous irreducible rep-
resentation of K (must be compact), i.e,. a continuous homomorphism
from K to GLn (C), extends uniquely to an analytic representation of
G = KC, i.e. an analytic homomorphism from G to GLn (C). For
example, irreducible continuous representations of SO2 (R) ∼= S1 are of
the form z 7→ zn. Irreducible analytic representations of SO2 (C) ∼= C×
are of the form z 7→ zn (always 1-dimensional). Next example: Two
special irreducible continuous representations of SU2 (R) :

• The 2-dim representation coming from K ↪→ GL2 (C).
• The 3-dimensional adjoint representation: K acts on su2 (C)

byconjugation, and su2 (C) is 3-dimensional. The action pre-
serves the Killing form:

X ⊗R Y 7→ tr ([X, [Y, •]] : su2 (C)→ su2 (C))

= tr (ad (X) ad (Y )) .

The Killing form of a semi-simple Lie algebra is negative definite
if and only if the corresponding Lie group is compact. Note that
semisimple Lie groups have finite fundamental group. So this
means that we have a map to the orthogonal group.

SU2 (C) → 0 (Killing form)

= O (3, 0) = O (0, 3) = O3 (R) .
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By connectedness, it maps to SO3 (R). By Lie algebras, it is
surjective, and it has a kernel (the kernel of the adjoint rep-
resentation is the center of the group) Z2 (generated by −1).
Thus,

K�± 1 ∼= SO3 (R)

so K = Spin3 (R) .

The (d+ 1)-dimensional representation is symd (C2) (there’s
exactly one in each dimension).

These representations extend to SL2 (C), as follows. The 2-d repre-
sentation extends in the obvious way, with SL2 (C) ↪→ GL2 (C). All
others extend as symmetric powers. The three-dimensional represen-
tation is the adjoint representation of sl2 (C).

2. Representations of Complex Groups

Classical examples of these: SLn (simple), GLn = SLn × GL1 (re-
ductive). SOn, Sp2n. We saw that every connected, compact Lie group
K has an associated connected complex Lie group G = KC, and the
restriction map from LHS=holomorphic irreducible representations of
G to RHS=continuous irreducible representations of K is a bijection.
Note that on the RHS, we have a nice structure theory: every con-
jugacy class in K intersects a fixed but arbitrary maximal connected
abelian subgroup called a torus T (because it is a torus ∼= (S1)

r
as a

Lie group, with r =rank). On the LHS, this is not true. We still have
nice maximal connected abelian subgroups, but they don’t meet every
conjugacy class. For complex groups, a maximal connected, abelian,
(consists of semisimple – diagonalizable – elements) is called an (alge-
braic) torus A. As a Lie group, A ∼= (C×)

r
for some r. For exam-

ple, in SU2 (C), T =

{(
z 0
0 z−1

)
: z ∈ S1

}
. In G = KC = SL2 (C),

A =

{(
z 0
0 z−1

)
: z ∈ C×

}
but not

{(
1 z
0 1

)
: z ∈ C

}
= U , which

is a maximal, connected, abelian subgroup of G but is not an al-
gebraic torus. It turns out that the solution to the conjugacy class
problem is to enlarge an algebraic torus to a Borel subgroup. The
“definition” is that B = A o U . For example, if G = SL2 (C),

B =

{(
a b
0 a−1

)
: a ∈ C×, b ∈ C

}
. Then B consists of upper tri-

angular matrices. We have B = {g ∈ G : g upper-triangular}. The
honest definition from the algebraic point of view is that a Borel sub-
group B in G is a maximal connected, solvable subgroup. (Solvable:
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B ≥ [B,B] ≥ [[B,B] , [B,B]] ≥ ... ≥ 1 .) The geometric definition is
that a Borel subgroup B in G is a minimal closed subgroup such that
G�B (as a space) is projective (as an algebraic variety). (Topologi-
cally: G�B is compact). Borel subgroups are unique up to conjugacy.

Going back to our example, the map SL2 (C)�B → CP1 defined by(
a b
c d

)
B 7→ C

(
a
c

)
is a biholomorphism.

Next example: SL3 (C)�


 a b c

0 e f
0 0 a−1e−1

 → FlagSL3
= flag

variety defined by

 a b c
d e f
g h i

B 7→

C
 a

d
g

 ,C

 a
d
g

⊕ C
 b

e
h

.

Note that FlagSL3
→ Gr (2, 1).

In general, G�B is called the flag variety of G.
Facts:

(1) all Borel subgroups are G-conjugate.
(2) B is self-normalizing, meaning that the normalizer NG (B) = B.

So G�B → {Borel subgroups} is bijective, with gB 7→ gBg−1.
Another concrete perspective: A (maximal) flag in Cn is a chain of

subspaces 0  V1  V2  ...  Cn, and a Borel in GLn (C) is the sta-
bilizer of a flag. That is, the stabilizer is {g ∈ GLn (C) : gVi = Vi ∀i}.

The holomorphic representations of G are realized inside the coho-
mology of G-equivariant line bundles over G�B. (Borel-Weil-Bott).

3. Borel-Weil-Bott and analogues over other fields

Last time: Let K be a compact, connected Lie group K, and let
G = KC (complex, connected). Inside G is B, the Borel subgroup
( G = Ad(G) · B), such that G�B is projective. Obligatory: Con-
sider Pic (G�B), the group of line bundles. Actually, we just con-
sider G-equivariant holomorphic line bundles. In particular, B acts
on the fiber over eB = B. That is, we have a homomorphism from
B to GL (fiber) = GL1 (C) (abelian), and thus, we get a map from
B� [B,B]. Recall that B = A n U , where A is an algebraic torus , a
maximal subgroup in G sisomorphic to (C×)

r
, and U is the unipotent

radical, and it happens that U = [B,B]. For example, if K = SU2 (C),
G = SL2 (C), and B is the block upper triangular, U is 1′s on the
diagonal and upper triangular, A is block.

So, given an equivariant line bundle, we obtain a holomorphic homo-
morphism A → C× (linear character of A). We can differentiate this
homomorphism: a → C. Then PicG (G�B) → a∗ . We can partially
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invert this map: given an integral λ ∈ a∗, which loosely means “ex-
ponentiable” (ie exp (λ) is induced from A to C× ). Think: A = C×,
a∗ = C, and integral means it’s in Z. We can now define an action of

B on C via B → A
eλ→ C×. Explicitly,

b · z = eλ (a) z,

where b = a × u. Then call this Cλ. Then G ×B Cλ is a line bundle
over G�B. Its natural G-action makes it eqiuivariant.

With the earlier K = SU2, G,B,A, if λ :

(
z

z−1

)
7→ z, then

G×B Cλ is the “tautological” bundle(
a b
c d

)
×B z 7→

(
z−1

(
a
c

)
,C
(
a
c

))
.

Theorem 1. (Borel-Weil) If λ is integral and dominant (lies in a cer-
tain cone in a∗), then Γhol (G�B,L−λ) is an irreducible G-module. All
irreducible G-representations arise in this way. If λ is not dominant,
then Γhol (G�B,L−λ) = 0.

Theorem 2. (Borel-Weil-Bott) If λ is integral and regular (lies in a
certain open subset of a∗ - complexment of hyperplanes), there is an
explicit integer i0 such that

H i (G�B,L−λ) = 0

unless i = i0, and H
i0 (G�B,L−λ) is an irreducible G-module. (Dol-

beault cohomology)

In our example, a∗ = C (with λ ↔ 1), integral means Z, dominant
means positive, regular means nonzero. L−λ is the dual of the tautolog-
ical bundle, which has a two-dimensional space of global holomorphic
sections. We are looking for holomorphic maps G→ G×B C−λ. We’ll
look instead at maps f : G→ C such that f (gau) = eλ (a) f (g). Given
f , can construct F : G → G ×B C−λ by g 7→ g ×B f (g). And, given
F : G → G ×B C−λ, we may define f : G → C by f (g) = z, where
F (g) = g ×B z.

We have the Cartan decomposition G = HB, where B is as before
and H = SO2 (C), by Gram-Schmidt orthogonalization. One can check
that H ∩ B = {±1}. The map f : G → C as above is determined by
its restriction to H; nearly any map H → C can be extended to a
suitable map G → C. (Nearly: up to ±1 ) However, the extension is
not automatically holomorphic.

Explicit calculation:
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(
a b
c d

)
=

( a√
a2+c2

− c√
a2+c2

c√
a2+c2

a√
a2+c2

)( √
a2 + c2 ?

0 1√
a2+c2

)
So

f

(
a b
c d

)
= e−λ

( √
a2 + c2 0

0 1√
a2+c2

)−1
f

(( a√
a2+c2

− c√
a2+c2

c√
a2+c2

a√
a2+c2

))

So e−λ
( √

a2 + c2 0
0 1√

a2+c2

)−1
=
√
a2 + c2. So we want f to pick off

either the 11 entry or the 12 entry (and everything else is in the span
of those two).

ie f

(
a −c
c a

)
= a or c, then the resulting extension is holomorphic.

“Obviously”, these are the only possibilities up to linear combinations.
Call these two maps X and Y respectively. Then the G-action on

Γ (G�B,L−λ) = CX ⊕CY is given by

(
a b
c d

)
·X = aX + cY , and(

a b
c d

)
·Y = bX+dY , and the matrix of this action is

(
a b
c d

)
. So

the character of this representation is Θ (g) = tr (action of g) = a+ d.

In particular, if g =

(
a

a−1

)
, then Θ (g) = a + a−1 = a2−a−2

a−a−2 ,

where the numerator is the signed sum of linear characters of A, the
denominator is the Weyl denominator.
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