
1. Characteristic Classes from the viewpoint of
Operator Theory

2. Introduction

Overarching Question: How can you tell if two vector bundles over
a manifold are isomorphic?

Let X be a compact Hausdorff space. There is a category equiva-
lence between vector bundles over X and idempotents {E : E2 = E} in
M (C (X)) = lim

→
M (n,C (X)), the set of infinite matrices with entries

in C (X) (complex-valued continuous functions), with all but finitely
many entries zero. The inclusion is

A ↪→
(
A 0
0 0

)
M (n,C (X)) ↪→ M (n+ 1, C (X)) .

The equivalence is

V = {Range (Ex)}x∈X ←→ E .

V ⊂ X × Cn, E ⊂M (n,C (X)) .

Note that every vector bundle is a subbundle of a trivial bundle. The
equivalence relation (isomorphism between categories) is similarity (or
homotopy). The addition is

[E] + [F ] =

[(
E 0
0 F

)]
.

Note that Γ (E) a (projective) module over C (X), and in fact projec-
tive modules are in one-to-one correspondence with vector bundles.

3. Chern-Weil Theory

How can you tell if idempotents over X are similar?

3.1. Invariant Polynomials. A complex-valued polynomial P : M (n,C)→
C is invariant if P (SAS−1) = P (A) for all A ∈ M (n,C), S ∈
GL (n,C). Examples include: If

det (I + xA) = 1 + c1 (A)x+ ...+ cn (A)xn

Each cj is an invariant polynomial. For example, c1 (A) = Tr (A),
cn (A) = det (A).

Theorem 1. The ring of invariant polynomials is generated by {cj (A)}.
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Let E ∈M (n,C∞ (X)) be an idempotent. Define

D : (Ω∗ (X))n = Ω∗ (X)⊕ ...⊕ Ω∗ (X)→ (Ω∗ (X))n+1

by

D (ω1, ω2, ..., ωn) = (dω1, ..., dωn) .

Define

∇E = EDE : (Ω∗ (X))n → (Ω∗ (X))n+1 .

Important point: ∇E is not C∞-linear, but ∇2
E is. In fact,

∇2
E = E (dE)2 = E (dE) ∧ (dE) .

(Note DE = D ◦ E, dE = d applied to entries of E).

Theorem 2. (Chern-Weil) If P is an invariant polynomial, then
P (∇2

E) is a closed form whose de Rham class only depends on the
similarity class of E.

Example 3. We have S2 = {(x, y, z) : x2 + y2 + z2 = 1} ⊂ R3. Let

E =
1

2

(
1 + x y + iz
y − iz 1− x

)
∈M

(
2, C∞

(
S2
))

Then

dE =
1

2

(
dx dy + idz

dy − idz −dx

)

(dE)2 =
1

2

(
dx dy + idz

dy − idz −dx

)
∧ 1

2

(
dx dy + idz

dy − idz −dx

)
=

1

2

(
−idy ∧ dz dx ∧ dy + idx ∧ dz

−dx ∧ dy + idx ∧ dz idy ∧ dz

)
So

E (dE)2 =
1

4

(
α11 α12

α21 α22

)
,

where each αij are two-forms. Note that there are no nontrivial 4-forms
on the sphere, so we have

det
(
1 +∇2

E

)
= 1 + c1

(
∇2

E

)
+ 0...

So

c1
(
∇2

E

)
=

1

4
(α11 + α22)

= − i
2

(zdxdy − ydxdz + xdydz) .
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We integrate this over the sphere to get

− i
2

∫
S2

(zdxdy − ydxdz + xdydz)

= − i
2

∫
B3

3dzdxdy (Stokes)

= − i
2

3
4

3
π = −2πi 6= 0.

So this bundle is nontrivial. Note that if it is a trivial idempotent, so
the Chern numbers would be zero.

4. Differential K-theory

Differential K-theory is a refinement of K-theory that takes into
account differentiable structures. First we consider ordinary K-theory
and what is new in the J. Simons and D. Sullivan theory.

Let X be a compact smooth manifold, and let Vect (X) be the set of
isomorphism classes of smooth complex vector bundles over X. Note
that each continuous vector bundle has a smooth structure. Let K0 (X)
be the Grothendieck completion of the abelian monoid Vect (X). Every
element of K0 (X) can be written as [V ]− [θn], where θn is the trivial
n-dimensional vector bundle.

Next, let ∇ be a connection on a vector bundle V over X. We define

ch (∇) =
∞∑

k=0

1

k!

(
1

2πi

)k

Tr (R ∧ ... ∧R) ∈ Ωeven (X) ,

where R is the curvature of ∇. The class [ch (∇)] ∈ Heven
dR (X) =

Heven
dR (X;C) only depends on the isomorphism class of V . One can

show that the Chern character extends to a homomorphism

ch : K0 (X)→ Heven
dR (X) ,

and

ch⊗ 1 : K0 (X)⊗ C→ Heven
dR (X) .

is an isomorphism.
Consider a smooth path γt = ∇t of connections in V . Let At = ∇̇t ∈

Ω1 (X,End (V )), and define

cs (γ) =

∫ 1

0

∞∑
k=1

1

(k − 1)!

(
1

2πi

)k

Tr (At ∧Rt ∧ ... ∧Rt) dt ∈ Ωodd
C (X) .

Then

d cs (V ) = ch (∇1)− ch (∇0) .
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Important Fact: If ∇0, ∇1 are two connections, then (1− t)∇0 + t∇1

is a connection for 0 ≤ t ≤ 1.

Theorem 4. If γ and α are smooth paths from ∇0 to ∇1, then

cs (α) = cs (γ) + exact form.

Define

CS (∇0,∇1) = cs (γ) mod (exact forms) .

We say that ∇0 are ∇1 are equivalent if CS (∇0,∇1) = 0. This
is an equivalence relation, which can be shown using these properties:
CS (∇0,∇0) = 0, and CS (∇0,∇1) = −CS (∇1,∇0), and CS (∇0,∇1)+
CS (∇1,∇2) = CS (∇0,∇2). A pair (V, [∇]) is called a structured
vector bundle. Isomorphism: if φ : V → W is a bundle isomorphism,
then we say that (W, [∇]) ∼ (V, [φ∗∇]). Addition: Direct Sum (Note

CS
(
∇V ⊕∇W , ∇̃V ⊕ ∇̃W

)
= CS

(
∇V , ∇̃V

)
+ CS

(
∇W , ∇̃W

)
. )

Let K̂0 (X) = Grothendieck completion of this abelian monoid. Ev-

ery element of K̂0 (X) can be written in the form

(V, [∇V ])− (θn, [d]) .

There is a map

δ : K̂0 (X)→ K0 (X)

given by

δ ((V, [∇V ])− (θn, [d])) = [V ]− [θn] .

Is there a nontrivial kernel of this map δ? Let GL (C) = lim
→
GL (n,C).

Let θ = A−1dA ∈ Ω1 (GL (C) ,M (C)). Define

Θ =
∞∑

k=1

bkTr (θ ∧ ... ∧ θ) , (2k − 1 form),

where

bk =
1

(k − 1)!

(
1

2πi

)k ∫ 1

0

(
t2 − t

)k−1
dt.

This generates the cohomology of GL (C). Define the abelian group

ΛGL(C) (X) =
{
g∗θ + Ωodd

exact (X) : g : X → GL (C) smooth
}
.

Proposition 5. If ∇ and ∇̃ are flat connections on a trivial bundle,

then CS
(
∇, ∇̃

)
∈ ΛGL(C) (X) mod (exact forms).
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Proof. We can write

∇̃ = ∇+ g−1dg = ∇+ g∗ (θ)

...

CS
(
∇, ∇̃

)
= g∗ (Θ) .

�

Theorem 6. There exists a short exact sequence

0→ Ωodd (X)�ΛGL (X)→ K̂0 (X)→ K0 (X)→ 0.
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