PRELIM EXAM SOLUTIONS

THE GRAD STUDENTS + KEN

Contents

2010F Complex Exam	1
2012S Complex Exam	4
2011S Real Exam	5
2011F Real Exam	6
2012S Real Exam	7
2012F Real Exam	8
2013S Real Exam	10
2013F Real Exam	15
2014S Real Exam	20
2010F Algebra Exam	22
2011S Algebra Exam	23
2011F Algebra Exam	25
2013S Algebra Exam	26
2013F Algebra Exam	27
2014S Algebra Exam	30
	2010F Complex Exam 2012S Complex Exam 2011S Real Exam 2011F Real Exam 2012S Real Exam 2012F Real Exam 2013S Real Exam 2013F Real Exam 2014S Real Exam 2010F Algebra Exam 2011S Algebra Exam 2011F Algebra Exam 2013S Algebra Exam 2013F Algebra Exam 2013F Algebra Exam

1. 2010F Complex Exam

2010F Complex Exam #1

Suppose that the function f(z) = u(z) + iv(z) with u, v real-valued is analytic in domain D and $v(z) = u(z)^2$. Prove that f is constant on D.

Proof. Since f is analytic on D, then the Cauchy-Riemman equations hold. That is,

$$u_x(z) = v_y(z) \tag{1}$$

$$u_y(z) = -v_x(z) \tag{2}$$

for all $z \in D$. Differentiating $v(z) = u(z)^2$ according to x and according to y yields the following

$$v_x(z) = 2u(z)u_x(z) \tag{3}$$

$$v_y(z) = 2u(z)u_x(z) \tag{4}$$

for all $z \in D$. By (2), $u_y(z) + v_x(z) = 0$. By (3), $u_y(z) + 2u(z)u_x(z) = 0$. By (1), $u_y(z) + 2u(z)v_y(z) = 0$. By (4), $u_y(z) + 4u(z)^2 u_y(z) = 0$. Then $u_y(z)(1 + 4u(z)^2) = 0$, which implies

$$u_y(z) = 0 \text{ or } (1 + 4u(z)^2) = 0.$$

The equation $1 + 4u(z)^2 = 0$ has no real solution for u(z). Thus $u_y(z) = 0$. Equation (4) implies $v_y(z) = 0$, and then f analytic on D implies

$$\begin{aligned} f'(z) &= v_y(z) - iu_y(z) \,\forall \, z \in D \\ f'(z) &= 0 \,\forall \, z \in D \end{aligned}$$

Therefore, f is constant on D.

2010F Complex Exam #9

Find all entire functions for which $|f(z)| \le |z|^2$ for $|z| \le 1$ and $|f(z)| \le |z|^3$ for $|z| \ge 1$.

Proof. Let f have the properties given in the statement. From the second inequality, we have that for $R \ge 1$,

$$\sup_{|x|=R} |f(z)| = R^3.$$

By the maximum principle $|f(z)| \leq R^3$ for all z such that $|z| \leq R$. Then, for instance, if $|z| = R_0 < R$ is fixed, the Cauchy inequality for derivatives implies

$$|f'''(z)| \le \frac{3!R^3}{(R-R_0)^3}.$$

Since f''' is entire, the maximum principle tells us that $|f'''(z)| \leq \frac{3!R^3}{(R-R_0)^3}$ for $|z| < R_0$ as well. Since the inequality is true for all $R \geq 1$, we have by choosing an arbitrary R_0 and taking the limit as $R \to \infty$ that $|f'''(z)| \leq 6$ for all $z \in \mathbb{C}$. By Liouville's Theorem, we conclude that f'''(z) is constant, so that

$$f(z) = a_3 z^3 + a_2 z^2 + a_1 z + a_0 z^2 + a_0 z^2$$

for some $a_3, a_2, a_1, a_0 \in \mathbb{C}$.

Next, consider the first inequality. The maximum principle for f and the Cauchy inequality for f' for 0 < r < 1 centered at z = 0 yields

$$|a_0| = |f(0)| \le r^2,$$

 $|a_1| = |f'(0)| \le \frac{r^2}{r} = r.$

Since these inequalities are true for all r > 0, we have

$$a_0 = a_1 = 0$$

Applying both inequalities when $z = e^{i\theta}$ for any $\theta \in \mathbb{R}$, we have

$$|a_3 e^{3i\theta} + a_2 e^{2i\theta}| \le 1$$
, or
 $|a_3 e^{i\theta} + a_2| \le 1$

by factoring out $|e^{2i\theta}| = 1$. Then either one of a_2 and a_3 is zero, or there exists $\theta \in \mathbb{R}$ such that $a_3 e^{i\theta}$ and a_2 have the same argument. Then the inequality above becomes

$$|a_3| + |a_2| = |a_3e^{i\theta} + a_2| \le 1$$

$$f(z) = a_3 z^3 + a_2 z^2, \text{ with} |a_3| \leq 1, |a_2| \leq 1 - |a_3|.$$

Conversely, suppose that f has the form above. Then for $|z| \ge 1$,

$$\begin{aligned} |f(z)| &\leq |a_3 z^3 + a_2 z^2| \\ &\leq |a_3 z^3| + |a_2 z^2| \\ &\leq |a_3| |z|^3 + |a_2| |z|^2 \\ &\leq |a_3| |z|^3 + (1 - |a_3|) |z|^3 \\ &= |z|^3. \end{aligned}$$

Likewise, for $|z| \leq 1$,

$$\begin{aligned} |f(z)| &\leq |a_3 z^3 + a_2 z^2| \\ &\leq |a_3 z^3| + |a_2 z^2| \\ &\leq |a_3| |z|^3 + |a_2| |z|^2 \\ &\leq |a_3| |z|^2 + (1 - |a_3|) |z|^2 \\ &= |z|^2. \end{aligned}$$

Thus, we have shown that f satisfies the hypotheses if and only if f is a cubic polynomial of the form

$$f(z) = a_3 z^3 + a_2 z^2$$
, with
 $a_2 |+|a_3| \leq 1.$

2010F Complex Exam #10

Find the number of zeros of $f(z) = z^5 - 20z^4 + 5z^3 - z^2 + 50z - 17$ inside the annulus $1 \le |z| \le 5$.

Proof. Let f be given as above. Observe that when |z| = 1,

$$\begin{aligned} |f(z) - 50z| &= |z^5 - 20z^4 + 5z^3 - z^2 - 17| \\ &\leq |z^5| + |20z^4| + |5z^3| + |z^2| + 17 \\ &= 1 + 20 + 5 + 1 + 17 < 50 = |50z|. \end{aligned}$$

Thus, |f(z) - 50z| < |50z| for z on the unit circle. By Rouche's Theorem, the number of zeros of f in the open unit disk is the same as that of 50z, which is one zero.

Next, consider the case where |z| = 5. Then

$$\begin{aligned} |f(z) + 20z^4| &= |z^5 + 5z^3 - z^2 + 50z - 17| \\ &\leq |z^5| + |5z^3| + |z^2| + |50z| + 17 \\ &= 5^5 + 5^4 + 5^2 + 50 \cdot 5 + 17 < 20 \cdot 5^4 = |-20z^4|. \end{aligned}$$

Thus, $|f(z) + 20z^4| < |-20z^4|$ if |z| = 5. By Rouche's Theorem, the number of zeros of f on $\{z : |z| < 5\}$ is the same as that of $-20z^4$, which is four zeros.

THE GRAD STUDENTS + KEN

Therefore, f has three zeros in the given annulus. (Throughout this proof, we have been counting multiplicities of zeros.)

2. 2012S Complex Exam

2012S Complex Exam #7

Suppose that g is a holomorphic function defined on $\{z \in \mathbb{C} : z \neq 0\}$ and that $|g'(z)| \leq \frac{1}{|z|^{3/2}}$ for $0 < |z| \leq 1$. Prove that z = 0 is a removable singularity.

Proof. Since g is holomorphic on $\mathbb{C} \setminus \{0\}$, g has a Laurent expansion

$$g(z) = \sum_{n = -\infty}^{\infty} a_n z^n$$

valid on $\mathbb{C} \setminus \{0\}$ with $a_n \in \mathbb{C}$. Since g is holomorphic on our set, so is g'. We rewrite

$$g(z) = \ldots + \frac{a_{-2}}{z^2} + \frac{a_{-1}}{z} + a_0 z + a_1 z + a_2 z^2 + \ldots$$

Thus,

$$|g'(z)| = |\dots + \frac{-2a_{-2}}{z^3} + \frac{-a_{-1}}{z^2} + a_1 + 2a_2z + \dots |$$

$$\leq \frac{1}{|z|^{3/2}}$$

on the annulus $0 < |z| \le 1$. Thus, multiplying by $|z^2|$,

$$\left| \dots + \frac{-2a_{-2}}{z} + \frac{-a_{-1}}{+}a_1z^2 + a_2z^3 + \dots \right| \le |z^{1/2}| \le 1$$

on $0 < |z| \le 1$. Since z^2 is holomorphic on the same annulus as g(z) and g'(z), then $z^2g'(z)$ is holomorphic on the same annulus, and thus, its Laurent expansion (given above) converges on that annulus. Therefore, by the Riemann Removable Singularity Theorem, $z^2g'(z)$ is holomorphic on the annulus, and therefore $a_k = 0$ for all k < -1.

By the Cauchy integral formula, since $g'(z)z^2$ is holomorphic on the disk (and beyond), for fixed r with $0 < r \le 1$,

$$\begin{aligned} -a_{-1} &= \lim_{w \to 0} g'(w) w^2 \\ &= \lim_{w \to 0} \frac{1}{2\pi i} \int_{|z|=r} \frac{z^2 g'(z)}{z - w} \, dz \\ &= \frac{1}{2\pi i} \int_{|z|=r} zg'(z) \, dz \end{aligned}$$

We can switch the limit and integral above since the limit of the integrand exists at all points z such that |z| = 1, and the limit is absolutely integrable. Note that the denominator is bounded strictly away from zero in the circle of integration. Now, since $|g'(z)| \leq |z|^{-3/2}$, when |z| = r, the integrand is bounded in absolute value by $r^{-1/2}$. Therefore,

$$|a_{-1}| \le \frac{1}{2\pi} (2\pi r) r^{-1/2} = r^{1/2}$$

Since this inequality is true for all r such that $0 < r \le 1$, we must have $a_{-1} = 0$. Therefore g is holomorphic at 0.

Proof. (Alternate proof) Since g is holomorphic on $\mathbb{C} \setminus \{0\}$, g has a Laurent expansion

$$g(z) = \sum_{n = -\infty}^{\infty} a_n z^n$$

valid on $\mathbb{C} \setminus \{0\}$ with $a_n \in \mathbb{C}$.

By the Laurent series formula for $g'(z) = \sum na_n z^{n-1}$, for any $n \in \mathbb{Z}$,

$$na_n = \frac{1}{2\pi i} \int_{|z|=r} \frac{g'(z)}{z^n} dz$$

Then for any r such that $0 < r \leq 1$,

$$|n| |a_n| \le \frac{1}{2\pi} \int_{|z|=r} |z|^{-\frac{3}{2}-n} |dz| = r^{-\frac{1}{2}-n}.$$

Thus, since this is true as $r \to 0^+$ for $n \le -1$ (i.e., $-\frac{1}{2} - n \ge \frac{1}{2}$), $a_n = 0$. Thus z = 0 is a removable singularity for g.

Proof. (quickest proof) Since g is holomorphic on $\mathbb{C} \setminus \{0\}$, g has a Laurent expansion

$$g(z) = \sum_{n = -\infty}^{\infty} a_n z^n$$

valid on $\mathbb{C} \setminus \{0\}$ with $a_n \in \mathbb{C}$.

By the Cauchy inequality formula for $g'(z) = \sum na_n z^{n-1}$, for any $n \in \mathbb{Z}$,

$$|na_n| \le \frac{M}{r^{n-1}}$$

where $M = \max_{|z|=r} |g'(z)| \le r^{-3/2}$ for $0 < r \le 1$. Then for any r such that $0 < r \le 1$,

ii onati o < / <u>-</u> 1,

$$|n| |a_n| \le r^{-\frac{1}{2}-n}.$$

Thus, since this is true as $r \to 0^+$ for $n \le -1$ (i.e., $-\frac{1}{2} - n \ge \frac{1}{2}$), $a_n = 0$. Thus z = 0 is a removable singularity for g.

3. 2011S Real Exam

2011S Real Exam #4

Let $F : \mathbb{R}^3 \to \mathbb{R}$ be smooth, and suppose that the graph of F(x, y, z) = 0 in \mathbb{R}^3 is a surface that is tangent to the plane z = 2x - y + 3 at (1, -1, 6).

(a) Prove that there exists an open disk D of some positive radius centered at $(-1, 6) \in \mathbb{R}^2$ and a function $g: D \to \mathbb{R}$ such that F(g(u, v), u, v) = 0 for all $u, v \in D$.

(b) Find all possible values of $\nabla g(-1, 6)$.

Proof. (a) Since the surface is tangent to z = 2x - y + 3 at (1, -1, 6) (which has vector (2, -1, -1) normal to the plane) and the gradient ∇F is perpendicular to the surface, we have

$$\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right)_{(1,-1,6)} = \lambda \left(2, -1, -1\right)$$

for some nonzero scalar λ . In particular, $\frac{\partial F}{\partial x}(1, -1, 6) \neq 0$. By the implicit function theorem, there exists an open disk D of some positive radius centered at $(-1, 6) \in \mathbb{R}^2$ and a function $g: D \to \mathbb{R}$ such that F(g(u, v), u, v) = 0 for all $u, v \in D$.

(b) Since F(g(u, v), u, v) = 0, we differentiate with respect to u and v to get (from the chain rule):

$$\frac{\partial F}{\partial x}\frac{\partial g}{\partial u} + \frac{\partial F}{\partial y}(1) = 0, \text{ i.e. } 2\lambda\frac{\partial g}{\partial u} + -\lambda = 0$$
$$\frac{\partial F}{\partial x}\frac{\partial g}{\partial v} + \frac{\partial F}{\partial z}(1) = 0, \text{ i.e. } 2\lambda\frac{\partial g}{\partial v} + -\lambda = 0.$$
Thus, $\nabla g(-1,6) = \left(\frac{\partial g}{\partial u}, \frac{\partial g}{\partial v}\right) = \left(\frac{1}{2}, \frac{1}{2}\right).$

4. 2011F Real Exam

2011F Real Exam #3

Let $f : [a, b] \to \mathbb{R}$ be bounded.

- (a) Prove that if f is Riemann integrable on [a, b], then so is f.
- (b) Prove that if f^2 is Riemann integrable on [a, b], then so is f.

Proof. (a) is True: Suppose f is Riemann integrable and bounded on [a, b]. Let $\varepsilon > 0$. There exists M > 0 such that |f(x)| < M for all $x \in [a, b]$. Observe that

$$\begin{aligned} \left| f^{2}(x) - f^{2}(y) \right| &= \left| f(x) + f(y) \right| \left| f(x) - f(y) \right| \\ &\leq \left(\left| f(x) \right| + \left| f(y) \right| \right) \left| f(x) - f(y) \right| \\ &\leq 2M \left| f(x) - f(y) \right|. \end{aligned}$$

Since f is Riemann integrable and $\varepsilon' = \frac{\varepsilon}{2M} > 0$, there exist a partition $P = (a = x_0 < x_1 < ... < x_m = b)$ of [a, b] such that $U(f, P) - L(f, P) < \frac{\varepsilon}{2M}$. Then

$$U(f^{2}, P) - L(f^{2}, P) = \sum_{j=0}^{m-1} \left(\sup_{x_{j} \le x \le x_{j+1}} f^{2}(x) - \inf_{x_{j} \le y \le x_{j+1}} f^{2}(y) \right) (x_{j+1} - x_{j})$$

$$= \sum_{j=0}^{m-1} \left(\sup_{x_{j} \le x, y \le x_{j+1}} f^{2}(x) - f^{2}(y) \right) (x_{j+1} - x_{j})$$

$$\leq \sum_{j=0}^{m-1} \left(\sup_{x_{j} \le x, y \le x_{j+1}} 2M |f(x) - f(y)| \right) (x_{j+1} - x_{j})$$

$$= 2M \sum_{j=0}^{m-1} \left(\sup_{x_{j} \le x, y \le x_{j+1}} f(x) - f(y) \right) (x_{j+1} - x_{j})$$

$$= 2M (U(f, P) - L(f, P)) < \varepsilon.$$

Thus, f^2 is Riemann integrable.

(b) is False: Let

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ -1 & \text{if } x \notin \mathbb{Q} \end{cases}$$

Then $f^{2}(x) = 1$, which is clearly Riemann integrable. But for any partition of P of the interval [a, b], the upper sum is U(f, P) = 1(b - a) = b - a, and the lower sum is L(f, P) =

)

2011F Real Exam #5

Let (x_k) be a sequence in \mathbb{R}^n and let L be the set of all limits of subsequences of (x_k) that exist. Prove that L is a closed set.

Proof. Let x be a limit point of L. Then there exist

5. 2012S Real Exam

2012S Real Exam #7

For which $k \in \mathbb{R}$ is it true that $\int_{\mathbb{R}^n} |x|^k e^{-|x|} dx < \infty$?

Proof. We compute the integral in spherical coordinates. That is, let

$$x_{1} = \rho \cos \varphi_{1}$$

$$x_{2} = \rho \sin \varphi_{1} \cos \varphi_{2}$$

$$x_{3} = \rho \sin \varphi_{1} \sin \varphi_{2} \cos \varphi_{3}$$

$$\dots$$

$$x_{n-1} = \rho \sin \varphi_{1} \dots \sin \varphi_{n-2} \cos \vartheta$$

$$x_{n} = \rho \sin \varphi_{1} \dots \sin \varphi_{n-2} \sin \vartheta$$

Then the integral is

$$\int_{\mathbb{R}^n} |x|^k e^{-|x|} dx$$

$$= \int_0^\infty \int_{\vartheta=0}^{2\pi} \int_{\varphi_1=0}^\pi \dots \int_{\varphi_{n-2}=0}^\pi \rho^k e^{-\rho} \left(\rho^{n-1} \sin^{n-2} \varphi_1 \sin^{n-3} \varphi_2 \dots \sin^1 \varphi_{n-2}\right) d\varphi_{n-2} \dots d\varphi_1 d\theta d\rho$$

$$= \int_0^\infty e^{-\rho} \rho^{n+k-1} d\rho \int_{\vartheta=0}^{2\pi} \int_{\varphi_1=0}^\pi \dots \int_{\varphi_{n-2}=0}^\pi \left(\sin^{n-2} \varphi_1 \sin^{n-3} \varphi_2 \dots \sin^1 \varphi_{n-2}\right) d\varphi_{n-2} \dots d\varphi_1 d\theta d\rho$$

This integral converges if and only if

$$\int_0^\infty e^{-\rho} \rho^{n+k-1} d\rho = \int_0^1 e^{-\rho} \rho^{n+k-1} d\rho + \int_1^\infty e^{-\rho} \rho^{n+k-1} d\rho$$

converges. The integral from 0 to 1 converges if and only if $\int_0^1 x^{n+k-1} dx$ converges, because for $x \in [0, 1]$, $\frac{1}{e}x^s \leq e^{-x}x^s \leq x^s$ for all $s \in \mathbb{R}$. By the standard facts about integral convergence, the integral converges if and only if n+k > 0, i.e. k > -n. The integral from 1 converges no matter what k is. The reason is that for all s and for all x sufficiently large, $x^{-2} > e^{-x}x^s > 0$, so since $\int_1^\infty x^{-2} dx$ converges, by the comparison test, so does $\int_1^\infty e^{-\rho} \rho^{n+k-1} d\rho$. Thus the conclusion is that the integral converges if and only if k > -n.

Note: one can avoid the spherical coordinates by lumping the angular coordinates together to calculate the volume of S^{n-1} .

2012S Real Exam #8

Let $h : \mathbb{R} \to \mathbb{R}$ be a smooth function such that h'(0) = 0 and h''(0) = 1. Define $F : \mathbb{R}^n \to \mathbb{R}$ by F(x) = h(|x|). Prove that F is differentiable on \mathbb{R}^n .

Proof. Since |x| is smooth in x at all points $p \in \mathbb{R}^n \setminus \{0\}$, h(|x|) is definitely smooth at points $x \neq 0$ since it is a composition of smooth functions. Next, observe that for x near 0 in \mathbb{R}^n ,

$$\frac{|F(x) - F(0)|}{|x|} = \frac{|h(|x|) - h(0)|}{|x|}$$
$$= \frac{|h'(c)||x|}{|x|} = |h'(c)|$$

by the mean value theorem, where c is a real number between |x| and 0. Since h' is continuous and h'(0) = 0, the limit of the above quantity as $x \to 0$ is 0, by the squeeze theorem. Thus,

$$\lim_{x \to 0} \frac{|F(x) - F(0)|}{|x|} = 0,$$

(Note that the above is NOT related to F'(0).)

So that F is differentiable at 0, with the derivative linear transformation being the zero map. Thus, F is differentiable on \mathbb{R}^n .

[Here, we are using the fact that for a function $F: U \to V$ of several variables, where $U \subseteq R^k$ and $V \subseteq R^n$, is differentiable at $a \in U$ if there exists a linear transformation $L: R^k \to R^n$ such that

$$\lim_{x \to a} \frac{\|F(x) - F(a) - L(x - a)\|}{\|x - a\|} = 0.$$

If this is indeed true, then L = dF(a) is the derivative of F at a. We write F'(a) for the matrix for the linear transformation, so that L(x-a) = F'(a)(x-a). (and, yes, F'(a) is the matrix of all the first partial derivatives).]

2012F Real Exam #4

Consider the series $S(x) = \sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$.

- (1) Find the interval of convergence of this series.
- (2) Is the convergence on this interval uniform?
- (3) Find S(1/2).

Proof. (a) We use the ratio test:

$$\lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)(n+2)} \frac{n(n+1)}{x^n} \right| = \lim_{n \to \infty} \left| \frac{nx}{(n+2)} \right| = |x|.$$

Thus, the series converges for |x| < 1. For x = 1, the series is

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \frac{1}{n^2 + n} < \sum_{n=1}^{\infty} \frac{1}{n^2};$$

The latter sum converges since it is a *p*-series, so the first series converges by the comparison test. For x = -1, the series is alternating and the absolute value of the terms form a decreasing sequence with a limit of zero. By the alternating series test, the series converges at x = -1.

(b) Observe that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges as shown above. By the Weierstrass *M*-test, the series converges uniformly.

(c) Observe that

$$S'(x) = \sum_{n=1}^{\infty} \frac{nx^{n-1}}{n(n+1)}$$
$$= \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n+1)}$$

Then

$$(x^2 S'(x))' = \sum_{n=1}^{\infty} x^n = \frac{1}{1-x} - 1 = \frac{x}{1-x}$$

Thus,

$$x^{2}S'(x) = -x - \log(1 - x) + C.$$

After evaluating at x = 0 we obtain C = 0. Then we integrate by parts to get

$$S(x) = -\log(x) + \int \frac{\log(1-x)}{x^2} \, dx = -\log(x) + \frac{\log(1-x)}{x} + \int \frac{1}{x(1-x)} \, dx$$

by integrating by parts. Then

$$S(x) = -\log(x) + \frac{\log(1-x)}{x} + \int \left(\frac{1}{1-x} + \frac{1}{x}\right)$$

= $\frac{\log(1-x)}{x} - \log(1-x) + C$
= $\frac{(1-x)\log(1-x)}{x} + C$

Taking the limit as $x \to 0$, we may evaluate the constant C: C = 1. Thus

$$S(\frac{1}{2}) = -\log(2) + 1.$$

2012F Real Exam #5

Prove that every sequence of real numbers has a monotone subsequence.

Proof. Let (S_n) be a sequence of real numbers. We define a term S_i of the sequence to be a **dominant term** if $S_i \ge S_j$ for all j > i. Define $T = \{i \in \mathbb{N} : S_i \text{ is a dominant term }\}$. We have two cases.

Case 1: T is finite. Let i_0 be greater than any element of T. Therefore S_{i_0} is not dominant. Then there exists $i_1 > i_0$ such that $S_{i_1} \ge S_{i_0}$. Similarly, for k > 1, there exists $i_k > i_{k-1}$ such that $S_{i_k} \ge S_{i_{k-1}}$ since $S_{i_{k-1}}$ is not dominant. Therefore, $(S_{i_k})_{k\geq 0}$ is a monotone increasing sequence.

Case 2: $T = \{t_1, t_2, ...\}$ is infinite, with

$$t_1 < t_2 < \dots$$

Then the sequence $(S_{t_p})_{p\geq 0}$ is by construction decreasing.

2012F Real Exam #6

Let f be continuous on [0, 1]. For $x \in [0, 1]$, let

$$g_n(x) = \int_0^x f(y)(x-y)^n \, dy.$$

- (1) Find the pointwise limit of g_n as $n \to \infty$.
- (2) Is the convergence uniform?

Proof. With the given information, by the extreme value theorem, f assumes a maximum and minimum on [0, 1], so $|f(y)| \leq M$ for some constant M, for all $y \in [0, 1]$. Now, for some fixed n,

$$\begin{aligned} |g_n(x)| &= \left| \int_0^x f(y)(x-y)^n \, dy \right| \le \int_0^x |f(y)|(x-y)^n \, dy \le M \int_0^x (x-y)^n \, dy \\ &= M \left[-\frac{(x-y)^{n+1}}{n+1} \right]_0^x \\ &= \frac{M}{n+1} x^{n+1}. \end{aligned}$$

Hence

$$\sup_{x \in [0,1]} |g_n(x)| \le \frac{M}{n+1}.$$

Since $\frac{M}{n+1} \to 0$ and $\frac{M}{n+1}$ is a uniform bound for $|g_n(x)|$, the sequence of functions converges uniformly.

7. 2013S Real Exam

2013S Real Exam #2

Evaluate the integral $\int \int_S \left(y\hat{i} + y\hat{j} + z\hat{k}\right) \cdot \hat{n} \, dS$, where S is the surface $\{(x, y, z) : x^2 + y^2 = z, z \leq 4\}$ and \hat{n} is the unit normal to S that points away from the z-axis.

Proof. (Method 1)

The surface S is a portion of the paraboloid $z = x^2 + y^2$ that is below the plane P defined by z = 4. If we include P in the integral, the surface $S \cup P$ is a closed surface, and we can extend \hat{n} to be the outward normal (so $\hat{n} = \hat{k}$ on P), and we have the setting of the divergence theorem. Let Ω be the interior of the paraboloid below z = 4. We have

$$\begin{split} \int \int_{S \cup P} \left(y\hat{i} + y\hat{j} + z\hat{k} \right) \cdot \hat{n} \, dS &= \int \int \int_{\Omega} div \left(y\hat{i} + y\hat{j} + z\hat{k} \right) \, dV \\ &= \int \int \int_{\Omega} \left(\frac{\partial}{\partial x} \left(y \right) + \frac{\partial}{\partial y} \left(y \right) + \frac{\partial}{\partial z} \left(z \right) \right) \, dV \\ &= 2 \cdot \int \int \int_{\Omega} 1 \, dV = 2 \text{volume} \left(\Omega \right). \end{split}$$

Next, using cylindrical coordinates with $r^2 = x^2 + y^2$ and $x = r \cos \theta$, $y = r \sin \theta$, we can compute:

2volume (
$$\Omega$$
) = $2 \int_{0}^{2\pi} \int_{0}^{2} (4 - r^{2}) r \, dr \, d\theta$
= $2 \int_{0}^{2\pi} \int_{0}^{2} (4r - r^{3}) \, dr \, d\theta$
= $2 \int_{0}^{2\pi} \left(2 (2)^{2} - \frac{(2)^{4}}{4} \right) \, d\theta$
= 16π .

Next, we integrate the portion over P (disk of radius 2 at z = 4).

$$\int \int_{P} \left(y\widehat{i} + y\widehat{j} + z\widehat{k} \right) \cdot \widehat{n} \, dS = \int_{0}^{2\pi} \int_{0}^{2} \left(y\widehat{i} + y\widehat{j} + 4\widehat{k} \right) \cdot \widehat{k} \, r \, dr \, d\theta$$
$$= 4 \int_{0}^{2\pi} \int_{0}^{2} 1 \, r \, dr \, d\theta$$
$$= 4 \left(\pi \left(2 \right)^{2} \right) = 16\pi.$$

Therefore,

$$\begin{split} \int \int_{S} \left(y\widehat{i} + y\widehat{j} + z\widehat{k} \right) \cdot \widehat{n} \ dS &= \int \int_{S \cup P} \left(y\widehat{i} + y\widehat{j} + z\widehat{k} \right) \cdot \widehat{n} \ dS \\ &- \int \int_{P} \left(y\widehat{i} + y\widehat{j} + z\widehat{k} \right) \cdot \widehat{n} \ dS \\ &= 16\pi - 16\pi = 0. \end{split}$$

(Method 2)

We parametrize the surface using the coordinate chart $\Phi(u, v) = (u, v, u^2 + v^2)$ with u, vin the disk of radius 2. Then the outward normal is the downward normal to the surface $z = x^2 + y^2$, i.e. the vector in the direction of ∇f , where $f(x, y, z) = x^2 + y^2 - z$, so $\nabla f = (2x, 2y, -1) = (2u, 2v, -1)$. (Note we chose the sign so that the z-component would be negative so that the vector points downward.) Then the unit normal is $\hat{n} = \frac{\nabla f}{\|\nabla f\|}$, and $\|\nabla f\| = \sqrt{4u^2 + 4v^2 + 1}$. The area form dS is the same as $\|\Phi_u \times \Phi_v\| du dv$, and $\Phi_u = (1, 0, 2u)$ and $\Phi_v = (0, 1, 2v)$, so that

$$\begin{split} \|\Phi_u \times \Phi_v\| &= \left\| \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & 2u \\ 0 & 1 & 2v \end{vmatrix} \right\| \\ &= \left\| (-2u)\hat{i} - (2v)\hat{j} + (1)\hat{k} \right\| \\ &= \sqrt{4u^2 + 4v^2 + 1} = \|\nabla f\| \,. \end{split}$$

Thus, we have

$$\int \int_{S} \left(y\hat{i} + y\hat{j} + z\hat{k} \right) \cdot \hat{n} \, dS$$

$$= \int \int_{\text{disk}} \left(v, v, u^2 + v^2 \right) \cdot \frac{\nabla f}{\|\nabla f\|} \|\nabla f\| \, du \, dv$$

$$= \int \int_{\text{disk}} \left(v, v, u^2 + v^2 \right) \cdot \nabla f \, du \, dv$$

$$= \int \int_{\text{disk}} \left(v, v, u^2 + v^2 \right) \cdot (2u, 2v, -1) \, du \, dv$$

$$= \int \int_{\text{disk}} 2uv + 2v^2 - u^2 - v^2 \, du \, dv$$

$$= \int \int_{\text{disk}} 2uv + v^2 - u^2 \, du \, dv$$

$$= \int_{r=0}^{2} \int_{\theta=0}^{2\pi} 2r^2 \cos \theta \sin \theta + r^2 \left(\sin^2 \theta - \cos^2 \theta \right) \, d\theta \, r \, dr$$

$$= \int_{r=0}^{2} r^3 \int_{\theta=0}^{2\pi} (\sin 2\theta - \cos (2\theta)) \, d\theta \, r \, dr = 0.$$

2013S Real Exam #4

(a) Let f be a nonnegative, continuous function on the nonnegative reals. For a positive integer n, let $I_n = \int_0^n f(x) dx$. Prove that $\int_0^\infty f(x) dx$ converges if and only if the sequence (I_n) converges.

(b) Show that the conclusion in (a) may be false if the hypothesis that f is nonnegative is dropped.

Proof. (a)

First, suppose that f is a nonnegative continuous function such that the improper integral $\int_0^\infty f(x) dx$ exists.

Then, if for all b > 0, we define

$$I_b = \int_0^b f(x) \, dx,$$

Then $\lim_{b\to\infty} I_b$ exists and is a nonnegative real number ℓ . Then, for all $\epsilon > 0$, there exists M > 0 such that $|I_b - \ell| < \epsilon$, whenever b > M. So, if n is a positive integer and n > M, then

$$|I_n - \ell| < \epsilon$$

Thus, $\lim_{n\to\infty} I_n = \ell$.

Conversely, suppose that f is a nonnegative continuous function and suppose that the sequence (I_n) for $n = \{1, 2, 3, ...\}$ converges. For all b > 0, if $n = \lfloor b \rfloor$, then

$$n - 1 < b \le n.$$

This implies

$$I_{n-1} < I_b \le I_n,$$

since f is nonnegative. By the squeeze theorem, $\lim_{b\to\infty} I_b$ exists.

Proof. (b)

Let $f(x) = \cos(2\pi x)$. The improper integral $\int_0^\infty f(x) dx$ does not exist, since

$$\int_0^\infty \cos(2\pi x) \, dx = \lim_{b \to \infty} \frac{1}{2\pi} \sin(2\pi b),$$

which does not exist. However, for n a positive integer,

$$I_n = \int_0^n \cos(2\pi x) \, dx = \frac{1}{2\pi} \sin(2\pi n) = 0.$$

so that $\lim_{n\to\infty} I_n = 0$.

2013S Real Exam #5

Let f be twice continuously differentiable. Prove that, given x and h, there exists θ such that

$$f(x+h) - 2f(x) + f(x-h) = f''(\theta)h^2$$

Proof. By Taylor's Theorem,

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(c_1)$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(c_2)$$

for some c_1 between x and x+h and some c_2 between x-h and x. Adding the two equations, we have

$$f(x+h) - 2f(x) + f(x-h) = \frac{h^2}{2} \left(f''(c_1) + f''(c_2) \right)$$

Since f'' is continuous, by the intermediate value theorem, there exists θ between c_1 and c_2 such that

$$f''(\theta) = \frac{f''(c_1) + f''(c_2)}{2},$$

because $\frac{f''(c_1)+f''(c_2)}{2}$ is between $f''(c_1)$ and $f''(c_2)$, inclusive.

2013S Real Exam #6

Let f(x) be infinitely differentiable and odd. Suppose the Fourier series

$$a_0 + \sum_{n=1}^{\infty} \left(a_n \cos 2\pi nx + b_n \sin 2\pi nx \right)$$

converges to f(x) on (-1,0) and the Fourier series

$$c_0 + \sum_{n=1}^{\infty} \left(c_n \cos 2\pi nx + d_n \sin 2\pi nx \right)$$

converges to f(x) on (0,1). Express the Fourier series of period 2 that converges to f(x) on (-1,1) in terms of $\{a_n\}, \{b_n\}, \{c_n\}, \{d_n\}$.

13

Proof. By the formulas for the Fourier series coefficients, since

$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos 2\pi nx + b_n \sin 2\pi nx)$$

for $x \in (-1, 0)$, we have

$$a_{0} = \int_{-1}^{0} f(x) dx$$

$$a_{n} = 2 \int_{-1}^{0} f(x) \cos 2\pi nx dx$$

$$b_{n} = 2 \int_{-1}^{0} f(x) \sin 2\pi nx dx$$

Similarly, for the Fourier series valid on (0, 1), the coefficients must satisfy

$$c_0 = \int_0^1 f(x) dx$$

$$c_n = 2 \int_0^1 f(x) \cos 2\pi nx dx$$

$$d_n = 2 \int_0^1 f(x) \sin 2\pi nx dx$$

We desire the coefficients A_k and B_k such that

$$f(x) = A_0 + \sum_{k=1}^{\infty} \left(A_k \cos \pi k x + B_k \sin \pi k x \right)$$
(5)

for $x \in (-1, 1)$, and so that

$$A_0 = \frac{1}{2} \int_{-1}^{1} f(x) dx$$
$$A_k = \int_{-1}^{1} f(x) \cos \pi kx dx$$
$$B_k = \int_{-1}^{1} f(x) \sin \pi kx dx$$

Since f is an odd function,

$$A_k = 0 \text{ for all } k \ge 0. \tag{6}$$

For any $n \in \mathbb{Z}_{>0}$, then we see that

$$B_{2n} = \frac{1}{2}(b_n + d_n).$$
(7)

On the other hand, for any $n \in \mathbb{Z}_{\geq 0}$

$$B_{2n+1} = \int_{-1}^{1} f(x) \sin \pi (2n+1) x \, dx$$
$$= 2 \int_{0}^{1} f(x) \sin \pi (2n+1) x \, dx.$$

Substituting the expansion valid on (0, 1), we see that

$$B_{2n+1} = 2c_0 \int_0^1 \sin \pi (2n+1)x \, dx + \sum_{j=1}^\infty \left(2c_j \int_0^1 \cos 2j\pi x \sin \pi (2n+1)x \, dx + 2d_j \int_0^1 \sin 2j\pi x \sin \pi (2n+1)x \, dx \right) = \frac{4c_0}{(2n+1)\pi} + \sum_{j=1}^\infty \left(c_j \int_0^1 (\sin \pi (2n+1+2j)x + \sin \pi (2n+1-2j)x) \, dx + d_j \int_0^1 (\cos \pi (2n+1-2j)x - \cos \pi (2n+1+2j)x) \, dx \right) = \frac{4c_0}{(2n+1)\pi} + \sum_{j=1}^\infty \left(c_j \left(\frac{2}{\pi (2n+1+2j)} + \frac{2}{\pi (2n+1-2j)} \right) + 0 \right) \\= \frac{4c_0}{(2n+1)\pi} + \sum_{j=1}^\infty \frac{4(2n+1)c_j}{\pi ((2n+1)^2 - 4j^2)} = \frac{4}{\pi} \sum_{j=0}^\infty \frac{(2n+1)c_j}{(2n+1)^2 - 4j^2}.$$
(8)

Note that since f is smooth, the constants c_j are rapidly decreasing, so the sum definitely converges (quickly). Substituting (6), (7), and (8) into (5), we have the Fourier expansion of f on (-1, 1).

8. 2013F Real Exam

2013 F
 Real Exam#1

Let C be the curve parametrized by

$$\vec{r}(t) = e^{\sqrt{t}} \vec{i} + \arctan(t^3) \vec{j}, \quad 0 \le t \le 1.$$

Evaluate

$$\int_C (6xy+2) \, dx + (3x^2+8y) \, dy.$$

Proof. Observe that $d(3xy^2 + 2x + 4y^2) = (6xy + 2) dx + (3x^2 + 8y) dy$. Let $f(x, y) = 3xy^2 + 2x + 4y^2$. Then, by the Fundamental Theorem of Calculus for Line Integrals,

$$\int_{C} (6xy+2) \, dx + (3x^2+8y) \, dy = f(\overrightarrow{r}(1)) - f(\overrightarrow{r}(0))$$
$$= 3e^2 \frac{\pi}{4} + 2e + 4\frac{\pi^2}{16} - 0 - 2 - 0$$
$$= 3e^2 \frac{\pi}{4} + 2e + \frac{\pi^2}{4} - 2$$

2013F Real Exam #2

Determine the maximum and minimum values of the quantity xy + 4z on the half ellipsoid $x^2 + 4y^2 + 2z^2 = 64$, $z \ge 0$.

Proof. Let $f(x, y, z) = x^2 + 4y^2 + 2z^2$, g(x, y, z) = xy + 4z. Using the method of Lagrange multipliers, we obtain critical points of g in the upper part where z > 0:

$$y = 2\lambda x$$
$$x = 8\lambda y$$
$$4 = 4\lambda z$$
$$^{2} + 4y^{2} + 2z^{2} = 64$$

The first two equations imply that $0 = 16\lambda^2 y - y = y(16\lambda^2 - 1)$. Thus, y = 0 or $\lambda = \frac{1}{4}$ or $\lambda = -\frac{1}{4}$. If y = 0 then x = 0 and $z = \sqrt{32}$. If $\lambda = \pm \frac{1}{4}$, then $y = \pm \frac{x}{2}$, $z = \pm 4$, and then the surface equation yields $x^2 = 16$, so $x = \pm 4$, $y = \pm 2$. So far, we have critical points $(0, 0, \sqrt{32}), (4, 2, 4), (4, -2, 4), (-4, 2, 4), (-4, -2, 4)$.

x

Next, consider the boundary $x^2 + 4y^2 = 64$, and the function is g(x,y) = xy, so the Lagrange multipliers method gives the equations $y = 2\lambda x, x = 8\lambda y$, and we get again y = 0 or $\lambda = \pm \frac{1}{4}$. If y = 0, x = 0, which is not on the ellipse. If $\lambda = \pm \frac{1}{4}, y = \pm \frac{x}{2}$, and then we get $(x, y) = (\pm 4\sqrt{2}, 2\sqrt{2})$ or $(\pm 4\sqrt{2}, -2\sqrt{2})$ are the critical points on the elliptical boundary.

After comparing the values of g(x, y, z) on all these points, we get g(x, y, z) obtains the maximum value g(-4, -2, 4) = g(-4, -2, 4) = 24, and it obtains the minimum value $g(4\sqrt{2}, -2\sqrt{2}, 0) = g(-4\sqrt{2}, 2\sqrt{2}, 0) = -16$.

2013F Real Exam #3

Define $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ by the formula

$$f(x,y) = \begin{cases} 0 & (x,y) = (0,0) \\ \frac{xy^2}{x^2 + y^2} & (x,y) \neq (0,0). \end{cases}$$

- (a) Prove that f is continuous at (0,0).
- (b) Prove that if $\vec{u} = a \vec{i} + b \vec{j}$ is a unit vector, then the directional derivative of f at (0,0) in the direction of \vec{u} exists, and compute its value.
- (c) Is f is differentiable at (0,0)?

Proof. (a) For any $\epsilon > 0$, let $\delta = \epsilon$. Then $||(x, y)|| < \delta$ implies that $\sqrt{x^2 + y^2} < \delta$, which implies that $|x| < \delta$, $|y| < \delta$. When y = 0 and $x \neq 0$, we have f(x, y) = 0, so certainly $|f(x, y) - 0| = 0 < \epsilon$. When y is nonzero,

$$|f(x,y) - f(0,0)| = \frac{|xy^2|}{|x^2 + y^2|} \le \frac{|x|y^2}{y^2} = |x| < \delta = \epsilon.$$

So in all cases, $|f(x,y) - f(0,0)| < \epsilon$ whenever $||(x,y)|| \le \delta$, so f is continuous at (0,0). (b) For $u = a\hat{i} + b\hat{j}$, ||u|| = 1, we have

$$D_u f(0,0) = \lim_{t \to 0} \frac{f(tu) - f(0,0)}{t} = \lim_{t \to 0} \frac{tatb^2}{t^2 a^2 + t^2 b^2} = \lim_{t \to 0} \frac{tab^2}{a^2 + b^2} = 0$$

,

since $a^2 + b^2 \neq 0$.

(c) From the above, the derivative matrix at (0,0) is $(f_x, f_y) = (00)$. Then if f were differentiable at (0,0), then

$$\lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)-0}{\sqrt{x^2+y^2}} = \lim_{(x,y)\to(0,0)}\frac{xy^2}{(x^2+y^2)^{3/2}} = 0.$$

But the limit above is definitely not zero (if it exists), because along y = x, the limit approaches

$$\lim_{y \to 0} \frac{y^3}{(y^2 + y^2)^{3/2}} = 2^{-3/2}.$$

2013F Real Exam #4

Let $\{f_n\}$ be a sequence of continuous functions on [0, 1].

- (1)
- (a) Suppose $\{f_n\}$ converges uniformly to a function f. Prove that f is continuous.
- (b) Give an example where $\{f_n\}$ converges pointwise to a function f that is not continuous.

Proof. (a) Let $\epsilon > 0$. Since $\{f_n\}$ converges uniformly to f on [0, 1], there exists $N \in \mathbb{N}$ such that for every $x \in [0, 1]$, $|f_n(x) - f(x)| < \frac{\epsilon}{3}$ for all n > N. Choose some n > N. Since f_n is continuous on [0, 1], for all $x \in [0, 1]$, there exists $\delta > 0$ such that if $y \in [0, 1]$ and $|x - y| < \delta$, then $|f_n(x) - f_n(y)| < \frac{\epsilon}{3}$. Now pick any $x \in [0, 1]$. Suppose $y \in [0, 1]$ such that $|x - y| < \delta$, then

$$\begin{aligned} |f(x) - f(y)| &= |f(x) - f_n(x) + f_n(x) - f_n(y) + f_n(y) - f(y)| \\ &\leq |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| \\ < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon \end{aligned}$$

Therefore, f is continuous on [0, 1].

(b) Let $f_n(x) = x^n$. Then

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 0 & \text{if } x \in [0, 1) \\ 1 & \text{if } x = 1 \end{cases}$$

2013 F
 Real Exam#5

Suppose that $\{a_n\}$ be a decreasing sequence of positive real numbers. Prove that the infinite series $\sum_{n=1}^{\infty} a_n$ converges if and only if the infinite series $\sum_{k=0}^{\infty} 2^k a_{2^k}$ converges. 2013F Real Exam #6

Suppose that $h: [0,1] \longrightarrow \mathbb{R}$ is bounded and has the property that h is Riemann integrable on $[\epsilon, 1]$ for every $0 < \epsilon < 1$. Using the definition of the Riemann integral, prove that h is Riemann integrable on the interval [0, 1].

Proof. Given $\epsilon > 0$, we need to find a partition P that is $0 = x_0 < ... < x_n = 1$ such that $U(f, P) - L(f, P) < \epsilon$, where U and L denote the upper and lower Riemann sums, respectively. Given $\epsilon > 0$, we proceed as follows. Since h is is integrable on $[\delta, 1]$ for

 $0 < \delta < 1$, we have a partition P_{δ} such that $U(h, P_{\delta}) - L(h, P_{\delta}) < \frac{\epsilon}{2}$. Let $\widetilde{P_{\delta}} = \{0\} \cup P_{\delta}$. Then $\widetilde{P_{\delta}}$ is a partition of [0, 1]. Let M and m be the maximum and minimum of h on [0, 1]. Then $U(h, \widetilde{P_{\delta}}) - L(h, \widetilde{P_{\delta}}) \leq 2M\delta + \epsilon/2$. If we choose $\delta < \frac{\epsilon}{4M}$, then choose P_{δ} accordingly, then $U(h, \widetilde{P_{\delta}}) - L(h, \widetilde{P_{\delta}}) \leq \epsilon$.

2013F Real Exam #7

Let h be a real-valued function and differentiable function on $[0, \infty)$ such that h(0) = 1 and $3 \le h'(x) \le 4$ for all $x \ge 0$. Prove that there exists a constant c such that

$$1 \le \frac{h(x)}{\sqrt{9x^2 + 1}} \le c$$

for all $x \ge 0$. **2013F Real Exam #8** Let f be a continuous function of period 2π , and suppose that

$$a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

is the Fourier series of f.

(a) Prove that the sum ∑[∞]_{n=1} |a_n|² converges.
(b) Suppose also that ∑[∞]_{n=1} n max{|a_n|, |b_n|} converges. Prove that f is differentiable and that the integral ∫^π_{-π}(f'(x))² dx is finite.

Proof. We assume the function is \mathbb{R} -valued. (a) Since f is continuous and 2π -periodic, $|f|^2$ is continuous and bounded so that $\int_0^{2\pi} |f|^2$ is finite, and the Fourier series converges. We have

$$\int_{0}^{2\pi} f \, dx = \int_{0}^{2\pi} a_0 \, dx = 2\pi a_0, \text{ so } a_0 = \frac{1}{2\pi} \int_{0}^{2\pi} f \, dx$$

$$\int_{0}^{2\pi} f(x) \cos(mx) \, dx = \int_{0}^{2\pi} a_m \cos^2(mx) \, dx = \pi a_n, \text{ so } a_m = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos(mx) \, dx.$$

$$\int_{0}^{2\pi} f(x) \sin(mx) \, dx = \int_{0}^{2\pi} b_m \sin^2(mx) \, dx = \pi b_m, \text{ so } b_m = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin(mx) \, dx.$$

PRELIM EXAM SOLUTIONS

We have, letting $S_N(x) = a_0 + \sum_{n=1}^N (a_n \cos nx + b_n \sin nx)$,

$$\begin{aligned} \int S_N(x)^2 &= \int_0^{2\pi} \left(a_0 + \sum_{n=1}^N \left(a_n \cos nx + b_n \sin nx \right) \right) \left(a_0 + \sum_{j=1}^N \left(a_j \cos jx + b_j \sin jx \right) \right) \, dx \\ &= \int_0^{2\pi} a_0^2 + 2a_0 \sum_{n=1}^N \left(a_n \cos nx + b_n \sin nx \right) + \sum_{n=1}^N \sum_{j=1}^N \left(a_n \cos nx + b_n \sin nx \right) \left(a_j \cos jx + b_j \sin jx \right) \\ &= \int_0^{2\pi} a_0^2 + 2a_0 \sum_{n=1}^\infty \left(a_n \cos nx + b_n \sin nx \right) + \sum_{n=1}^N \sum_{j=1}^N \left(a_n \cos nx + b_n \sin nx \right) \left(a_j \cos jx + b_j \sin jx \right) \\ &= \int_0^{2\pi} a_0^2 + 2a_0 \sum_{n=1}^\infty \left(a_n \cos nx + b_n \sin nx \right) + \sum_{n=1}^N \sum_{j=1}^N a_n a_j \cos nx \cos jx + a_j b_n \sin nx \cos jx + b_n \sin nx \\ &= a_0^2 2\pi + 2a_0 \sum_{n=1}^\infty \int \left(a_n \cos nx + b_n \sin nx \right) \, dx + \sum_{n=1}^N \sum_{j=1}^N a_n a_j \int \cos nx \cos jx \, dx + a_j b_n \int \sin nx \right) \\ &= a_0^2 2\pi + 2a_0 \cdot 0 + \sum_{n=1}^N \sum_{j=1}^N a_n a_j \delta_{jn} \pi + a_j b_n \cdot 0 + b_j a_n \cdot 0 + \sum_{n=1}^N \sum_{j=1}^N b_n b_j \delta_{jn} \pi \\ &= 2\pi a_0^2 + \pi \sum_{n=1}^N a_n^2 + \pi \sum_{n=1}^N b_n^2. \end{aligned}$$

We know that $\int |f - S_N|^2 \to 0$ as $N \to \infty$.

$$|S_N(x)| = |S_N(x) - f(x) + f(x)| \le |S_N(x) - f(x)| + |f(x)|,$$

by the triangle inequality, so

$$|S_N(x)|^2 \le |S_N(x) - f(x)|^2 + |f(x)|^2 + 2|S_N(x) - f(x)||f(x)|.$$

Integrating,

$$\int |S_N(x)|^2 dx \leq \int |S_N(x) - f(x)|^2 + \int |f(x)|^2 + 2 \int |S_N(x) - f(x)| |f(x)|$$

$$\leq \int |S_N(x) - f(x)|^2 + \int |f(x)|^2 + 2\sqrt{\int |S_N(x) - f(x)|^2} \sqrt{\int |f(x)|^2}$$

Since $\int |f(x)|^2$ is a finite number and $\int |S_N(x) - f(x)|^2$ is bounded independent of N, $\int |S_N(x)|^2 dx$ is bounded independent of N. Thus,

$$\lim_{N \to \infty} \left(2\pi a_0^2 + \pi \sum_{n=1}^N a_n^2 + \pi \sum_{n=1}^N b_n^2 \right)$$

is bounded, and thus $\sum_{n=1}^{\infty} a_n^2$ converges. (b) Suppose also that $\sum_{n=1}^{\infty} n \max\{|a_n|, |b_n|\}$ converges. First we check differentiability of the Fourier series. Since

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right),$$

we know that f'(x) exists and equals the differentiated series if $\sum_{n=1}^{\infty} \left| \frac{d}{dx} \left(a_n \cos nx + b_n \sin nx \right) \right|$ converges. We check that

$$\begin{split} \sum_{n=1}^{\infty} \left| \frac{d}{dx} \left(a_n \cos nx + b_n \sin nx \right) \right| &= \sum_{n=1}^{\infty} \left| \left(-na_n \sin nx + nb_n \cos nx \right) \right| \\ &\leq \sum_{n=1}^{\infty} \left(n \left| a_n \right| \left| \sin nx \right| + n \left| b_n \right| \left| \cos nx \right| \right) \\ &\leq \sum_{n=1}^{\infty} \left(n \left| a_n \right| + n \left| b_n \right| \right) \leq 2 \sum_{n=1}^{\infty} n \max\{ |a_n|, |b_n| \} < \infty. \end{split}$$

Thus, f'(x) exists and satisfies

$$f(x) = \sum_{n=1}^{\infty} \left(-na_n \sin nx + nb_n \cos nx \right).$$

Let

$$T_N(x) = \sum_{n=1}^N \left(nb_n \cos nx - na_n \sin nx \right).$$

By the last calculation, if $\sum n^2 |b_n|^2 + n^2 |a_n|^2$ converges we know that $T_N(x)$ converges. But

$$\sum_{n} n^2 |b_n|^2 + n^2 |a_n|^2 \le 2 \sum_{n} (n \max\{|a_n|, |b_n|\})^2$$

But if $\sum |x_n| < \infty$, $\sum |x_n|^2 < \infty$ (since only a finite number of x_n have modulus > 1). So we have

$$\sum n^2 |b_n|^2 + n^2 |a_n|^2 < \infty,$$

so by the first part,

$$\int |f'(x)|^2 \le \pi \sum_{n=1}^{\infty} n^2 |b_n|^2 + n^2 |a_n|^2 < \infty.$$

9. 2014S Real Exam

2014S Real Exam #1 Let f be the function of period 2 that equals |x| on [-1, 1].

(a) Find the Fourier series of f. (b) Use it to evaluate $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

Proof. Let

$$f(x) = |x| = \frac{a_0}{2} + \sum a_n \cos(n\pi x) + \sum b_n \sin(n\pi x).$$

Then

$$a_{0} = \int_{-1}^{1} |x| \, dx = 1$$

$$a_{n} = \int_{-1}^{1} |x| \cos(n\pi x) \, dx = 2 \int_{0}^{1} x \cos(n\pi x) \, dx$$

$$= 2 \left(\frac{x}{\pi n} \sin(\pi nx) \Big|_{0}^{1} - \frac{1}{\pi n} \int_{0}^{1} \sin(\pi nx) \, dx \right)$$

$$= 2 \left(\frac{1}{(\pi n)^{2}} \cos(\pi nx) \right) \Big|_{0}^{1} = \frac{2}{\pi^{2} n^{2}} (\cos \pi n - 1) = \begin{cases} -\frac{4}{\pi^{2} n^{2}} & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}$$

$$b_{n} = 0 \text{ since } |x| \text{ is even}$$

Thus,

$$f(x) = \frac{1}{2} + \sum_{n \text{ odd}} -\frac{4}{\pi^2 n^2} \cos(n\pi x).$$

(b) Letting x = 0, we get

$$0 = \frac{1}{2} - \frac{4}{\pi^2} \sum_{n \text{ odd}} \frac{1}{n^2}.$$

Thus,

$$\sum_{n \text{ odd}} \frac{1}{n^2} = \frac{\pi^2}{8}.$$

Now,

$$\sum_{n} \frac{1}{n^{2}} = \sum_{n \text{ odd}} \frac{1}{n^{2}} + \sum_{n \text{ even}} \frac{1}{n^{2}}$$
$$\sum_{n} \frac{1}{n^{2}} = \sum_{n \text{ odd}} \frac{1}{n^{2}} + \frac{1}{4} \sum_{n} \frac{1}{n^{2}}$$

 So

$$\frac{3}{4}\sum_{n}\frac{1}{n^2} = \sum_{n \text{ odd}}\frac{1}{n^2} = \frac{\pi^2}{8}.$$

 $\sum_n \frac{1}{n^2} = \frac{\pi^2}{6}.$

Thus,

- **2014S Real Exam #4** Suppose that $\sum_{n=0}^{\infty} a_n$ converges. (a) Prove or disprove that $\sum_{n=0}^{\infty} a_n^2$ converges. (b) Prove or disprove that $\sum_{n=0}^{\infty} a_n^3$ converges.

Proof. (a) Let $a_n = (-1)^n (n+1)^{-1/2}$. Then $\sum_{n=0}^{\infty} a_n$ converges by the alternating series test $(|a_n| \to 0, (|a_n|)$ is decreasing, and (a_n) is alternating.) But $\sum a_n^2 = \sum \frac{1}{n+1}$ diverges. (b)

2014S Real Exam #7

(a) Prove or disprove that there exists a surjective continuous function $F : B \to H$, where B is an open ball in \mathbb{R}^2 and $H = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 + 1 = 0\}.$

(b) Prove or disprove that there exists a surjective continuous function $F: H \to B$, with H and B as in (a).

Proof. (a) There does not exist such a map, because B is connected and H is a hyperboloid of two sheets and is thus disconnected. (The continuous image of a connected set is connected.)

(b) First, let B be be the unit disk in \mathbb{R}^2 centered at 0. Let $p: H \to \mathbb{V}^2$ be p(x, y, z) = (x, y). Clearly, p is surjective and continuous. Let $q: \mathbb{R}^2 \to B$ be defined by

$$q(x,y) = \frac{1}{1 + \sqrt{x^2 + y^2}}(x,y)$$

We see that ||q(x,y)|| < 1 for each (x, y), so the image of q is contained in B. Since the function $r \mapsto \frac{r}{1+r}$ maps 0 to itself, $\mathbb{R}_{>0}$ to itself, and since it is increasing and $\lim_{r\to\infty} \frac{r}{1+r} = 1$, it maps $[0,\infty)$ to [0,1) bijectively. Then q maps each ray $\{r(\cos\theta,\sin\theta): 0 \leq r < \infty\}$ to $\{r(\cos\theta,\sin\theta): 0 \leq r < 1\}$ bijectively, so that q is a bijective continuous map from \mathbb{R}^2 to B^2 . Thus, $q \circ p$ is a continuous surjective map from H to B. Finally, this map may be composed with a bijective translation and dilation (ie homothety) that maps B to any open ball in \mathbb{R}^2 .

10. 2010F Algebra Exam

2010F Algebra #1

Let G be a group, let N be a normal subgroup of G of finite index. Suppose that H is a finite subgroup of G and that the order of H is relatively prime to the index of N in G. Prove that H is contained in N.

Proof. Let [G:N] = n, |H| = m with $n, m \in \mathbb{N}$ and gcd(n,m) = 1. Since N is normal, $G \swarrow N$ is a group of order n. Since m is relatively prime to n, there exist integers s, t such that ns + mt = 1 (Bézout's Identity). Let $h \in H$. Note that

$$(hN)^{1} = (hN)^{ns+mt}$$

= $[(hN)^{n}]^{s} [(hN)^{m}]^{t}$
= $N^{s} [h^{m}N]^{t}$

by Lagrange's Theorem applied to $G \swarrow N$. Then

$$hN = N^s N^t = N.$$

Thus, $h \in N$.

2010F Algebra #4

Let G be a group and S a subset of G. For all $g_1, g_2 \in G$, suppose that either $Sg_1 = Sg_2$ or $Sg_1 \cap Sg_2 = \emptyset$. Prove that S = Hg for some subgroup H and some $g \in G$.

Proof. Let r, s be arbitrary elements of S. Then $1 = rr^{-1} \in S_{r^{-1}}$ and similarly $1 \in S_{s^{-1}}$. So $S_{r^{-1}} \cap S_{s^{-1}} \neq \emptyset$. By the given, $S_{r^{-1}} = S_{s^{-1}}$ for any elements $r, s \in S$. We now let $H = Sr^{-1}$ for a fixed $r \in S$. For any $h = s_0r^{-1} \in Sr^{-1}$ with $s_0 \in S$, $h^{-1} = rs_0^{-1} \in Ss_0^{-1} = Sr^{-1} = H$, so H is closed under inverses. For any $h_1 = s_1r^{-1}$ and

 $h_2 = s_2 r^{-1}$ in Sr^{-1} with $s_1, s_2 \in S$. Since $Sr^{-1} = Ss_2^{-1}$, there exists $s_3 \in S$ such that $s_1 r^{-1} = s_3 s_2^{-1}$. Then $h_1 h_2 = s_1 r^{-1} s_2 r^{-1} = s_3 s_2^{-1} s_2 r^{-1} = s_3 r^{-1} \in Sr^{-1} = H$. Thus, H is closed under multiplication and is thus a subgroup of G. Then $Hr = (Sr^{-1})r = S$. \Box

2010F Algebra #7

Find all groups of order 4, and prove that your list is complete.

Let G be a group of order 4. If there exists an element of order 4, then G is cyclic and is \mathbb{Z}_4 . Otherwise, all non-identity elements of G have order 2. In that case, let $a, b \in G$ be distinct such that $a^2 = b^2 = e$, the identity. Consider ab. Since $a^{-1} = a$, $ab \neq e$. Since $a \neq e$ and $b \neq e$, $ab \neq b$ and $ab \neq a$. Thus, ab is the other element of the group. Similarly, ba is that same element. Thus G is abelian and $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ by $a \mapsto (1,0), b \mapsto (0,1)$.

2010F Algebra #9

Suppose that det $(A + xB) = x^5 + 10x + 5$ for some 5×5 matrices A and B with complex number entries and all $x \in \mathbb{C}$. Prove that B is an invertible matrix.

Proof. We have det A = 5, so A is invertible. Then, multiplying by $\frac{1}{5} = \det(A^{-1})$, we have

$$\det (A^{-1} (A + xB)) = \frac{1}{5}x^5 + 2x + 1$$
$$\det (I + A^{-1}xB) = \frac{1}{5}x^5 + 2x + 1$$
$$\det (I + xA^{-1}B) = \frac{1}{5}x^5 + 2x + 1$$

For $x \neq 0$,

$$x^{5} \det \left(x^{-1}I + A^{-1}B\right) = \frac{1}{5}x^{5} + 2x + 1, \text{ or}$$
$$\det \left(A^{-1}B + x^{-1}I\right) = \frac{1}{5} + 2x^{-4} + x^{-5}.$$

Letting $\lambda = -x^{-1}$, we have for $\lambda \neq 0$,

$$\det \left(A^{-1}B - \lambda I \right) = \frac{1}{5} + 2\lambda^4 - \lambda^5.$$

By continuity, this equation is true for all λ in \mathbb{C} , so det $(A^{-1}B) = \det(A^{-1}) \det(B) = \frac{1}{5}$, and so det $(B) \neq 0$. Thus B is invertible.

11. 2011S Algebra Exam

2011S Algebra #1

Let A be a commutative ring with identity, and let I be a proper (2-sided) ideal. Prove that $A \neq I$ is an integral domain if and only if whenever $ab \in I$, $a \in I$ or $b \in I$.

Proof. Note that $A \not/ I$ is always a ring if I is an ideal; if A is commutative, then it is easy to show that $A \not/ I$ is commutative as well: for any $a, b \in A$, (a + I)(b + I) = ab + I = ba + I = (b + I)(a + I). Further I is the additive identity (zero) in $A \not/ I$.

 (\Longrightarrow) Assume that $A \not I$ is an integral domain. Suppose that $a, b \in A$ such that $ab \in I$. Then

$$(a+I)(b+I) = ab + I = I.$$

Because $A \not I$ has no zero divisors, a + I = I or b + I = I; thus $a \in I$ or $b \in I$. (\Leftarrow) Assume that for all $a, b \in A$ such that $ab \in I$, either $a \in I$ or $b \in I$. Then if (x + I), (y + I) are any two elements of $A \not I$ such that (x + I) (y + I) = I, then xy + I = I, so that $xy \in I$. By the hypothesis, $x \in I$ or $y \in I$, meaning that either x + I = I or y + I = I. Thus, $A \not I$ has no zero divisors and is thus an integral domain.

2011S Algebra #7

Find the Galois group of $f(x) = (x^2 - 2)(x^3 - 3)$ (a) over \mathbb{Q} .

- (a) over \mathbb{Q} .
- (b) over \mathbb{F}_7 , the finite field of order 7.

Proof. (a) Over \mathbb{Q} , $x^2 - 2$ does not factor (rational roots test, or Eisenstein criterion with p = 2), and similarly, $x^3 - 3$ does not have a root and thus does not reduce further. We see that

$$f(x) = \left(x + \sqrt{2}\right) \left(x - \sqrt{2}\right) \left(x - \sqrt{3}\right) \left(x - \sqrt{3}\right) \left(x - \omega\sqrt[3]{3}\right) \left(x - \omega^2\sqrt[3]{3}\right),$$

$$\pi^{i/3} \text{ is a third part of unity and therefore satisfies $\omega^3 = 1$. (4.11)$$

where $\omega = e^{2\pi i/3}$ is a third root of unity, and therefore satisfies $\omega^3 - 1 = (\omega - 1)(\omega^2 + \omega + 1) = 0$. The splitting field of f is $K = \mathbb{Q}(\sqrt{2}, \sqrt[3]{3}, \omega)$, and

$$[K:\mathbb{Q}] = \left[\mathbb{Q}\left(\sqrt{2}, \sqrt[3]{3}, \omega\right), \mathbb{Q}\left(\sqrt{2}, \sqrt[3]{3}\right)\right] \left[\mathbb{Q}\left(\sqrt{2}, \sqrt[3]{3}\right), \mathbb{Q}\left(\sqrt{2}\right)\right] \left[\mathbb{Q}\left(\sqrt{2}\right), \mathbb{Q}\right]$$

We have

$$\begin{bmatrix} \mathbb{Q}\left(\sqrt{2}, \sqrt[3]{3}, \omega\right), \mathbb{Q}\left(\sqrt{2}, \sqrt[3]{3}\right) \end{bmatrix} = 2, \\ \begin{bmatrix} \mathbb{Q}\left(\sqrt{2}, \sqrt[3]{3}\right), \mathbb{Q}\left(\sqrt{2}\right) \end{bmatrix} = 3, \\ \begin{bmatrix} \mathbb{Q}\left(\sqrt{2}\right), \mathbb{Q} \end{bmatrix} = 2, \end{cases}$$

since the minimial polynomials of ω , $\sqrt[3]{3}$, $\sqrt{2}$, respectively, over $\mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$, $\mathbb{Q}(\sqrt{2})$, and \mathbb{Q} , respectively, are $x^2 + x + 1$, $x^3 - 3$, and $x^2 - 2$, respectively. Thus, $[K : \mathbb{Q}] = 12$. The Galois group of K over Q is determined by its permuting action on the roots of these irreducible polynomials. We define the elements α , β , γ of the Galois group $G(K, \mathbb{Q})$ by

$$\alpha \begin{pmatrix} \sqrt{2} \\ \sqrt[3]{3} \\ \omega \end{pmatrix} = \begin{pmatrix} -\sqrt{2} \\ \sqrt[3]{3} \\ \omega \end{pmatrix}, \ \beta \begin{pmatrix} \sqrt{2} \\ \sqrt[3]{3} \\ \omega \end{pmatrix} = \begin{pmatrix} \sqrt{2} \\ \omega\sqrt[3]{3} \\ \omega \end{pmatrix}, \ \gamma \begin{pmatrix} \sqrt{2} \\ \sqrt[3]{3} \\ \omega \end{pmatrix} = \begin{pmatrix} \sqrt{2} \\ \omega\sqrt[3]{3} \\ \omega^2 \end{pmatrix}$$

Then $\alpha^2 = 1$ (identity). Also, $\beta^2 (\sqrt[3]{3}) = \beta (\omega\sqrt[3]{3}) = \omega\omega\sqrt[3]{3} = \omega^2\sqrt[3]{3}$, and $\beta^3 (\sqrt[3]{3}) = \omega^2\omega\sqrt[3]{3} = \sqrt[3]{3}$. Also, $\gamma^2 (\sqrt[3]{3}) = \gamma (\omega\sqrt[3]{3}) = \omega^2\omega\sqrt[3]{3} = \sqrt[3]{3}$ and $\gamma^2 (\omega) = \gamma (\omega^2) = \omega^4 = \omega$. Thus, β is a 3-cycle and γ is a 2-cycle when restricted to the Galois group of $x^3 - 3$, and so they generate all of S_3 , the symmetric group of permutations of the roots of $x^3 - 3$, and they fix $\sqrt{2}$. The automorphism α generates the Galois group \mathbb{Z}_2 of $\mathbb{Q} (\sqrt{2})$ and fixes the roots of $x^3 - 3$. Thus, α commutes with the group generated by β and γ , and thus, the whole Galois group is isomorphic to $\mathbb{Z}_2 \times S_3$.

(b) By inspection we see that $(x-3)(x-4) = x^2 - 7x + 12 = x^2 - 2$ in \mathbb{F}_7 . Also, we check by substituting x = 0, 1, 2, 3, 4, 5, 6 into $x^3 - 3$ to see that it has no root in \mathbb{F}_7 and thus does not factor. So the Galois group is the Galois group of the splitting field of the irreducible polynomial $x^3 - 3$. Thus it has order 3 and is thus the cyclic group \mathbb{Z}_3 generated by the Frobenius automorphism $y \mapsto y^3$, and the splitting field is \mathbb{Z}_{27} .

12. 2011F Algebra Exam

2011 F
 Algebra #1

Let K and M be subgroups of the group G. Define the relation \sim on G by $x \sim y$ if there exists $k \in K$, $m \in M$ such that x = kym.

(a) Prove that \sim is an equivalence relation.

(b) For K, M finite, prove that the cardinality |[x]| of the equivalence class [x] is $\frac{|K||M|}{|x^{-1}Kx \cap M|}$.

Proof. (a) Reflexivity: $x \sim x$ since for the identity e, x = exe, for all $x \in G$.

Symmetry: Assume $x \sim y$ for some $x, y \in G$, which means x = kym for some $k \in K$, $m \in M$. Then $y = k^{-1}xm^{-1}$, and since $k^{-1} \in K$ and $m^{-1} \in M$, we have $y \sim x$.

Transitivity: Assume that $x \sim y$ and $y \sim z$, for some $x, y, z \in G$. Then $x = k_1 y m_1$ and $y = k_2 z m_2$ for some $k_1, k_2 \in K$ and $m_1, m_2 \in M$. Then $x = k_1 (k_2 z m_2) m_1 = (k_1 k_2) z (m_2 m_1)$ by associativity, and since $k_1 k_2 \in K$ and $m_1 m_2 \in M$, $x \sim z$.

(b) Observe that

 $[x] = \{kxm : \text{ for some } k \in K, m \in M\}.$

Let $\phi_x : K \times M \to [x]$ be defined by $\phi_x(k,m) = kxm$. Note that this is not a homomorphism (in particular, [x] is not a group). Then for a given $k_0 x m_0 \in [x]$,

$$\phi_x^{-1}(k_0 x m_0) = \{(k,m) : k x m = k_0 x m_0\} \\
= \{(k,m) : x^{-1} k_0^{-1} k x = m_0 m^{-1}\}.$$

Since $\{k_0^{-1}k : k \in K\} = K$ and $\{m_0m^{-1} : m \in M\} = M$, the cardinality of this set is the same as

$$\{(k',m'): x^{-1}k'x = m'\}$$

Since m' determines k' and k' determines m' in the equation above,

$$\phi_x^{-1}(k_0 x m_0) \Big| = \Big| \Big\{ (k', m') : x^{-1} k' x = m' \Big\} \Big| = \Big| x^{-1} K x \cap M \Big| .$$

Thus, $\phi_x : K \times M \to [x]$ is a $|x^{-1}Kx \cap M|$ -to-1 map, so that

$$|[x]| = \frac{|K| \cdot |M|}{|x^{-1}Kx \cap M|}.$$

2011F Algebra #2

A ring with multiplicative identity is called a *local ring* if it has exactly one maximal ideal. Show that a commutative ring with multiplicative identity is a local ring if and only if its set of non-units is an ideal.

Proof. First, observe that no proper ideal of such a ring R contains a unit: Suppose that an ideal U contains a unit u. Then u^{-1} exists, so $1 = u^{-1}u \in U$, so that $r \cdot 1 = r \in U$ for all $r \in R$, so U = R.

(\Leftarrow) Next, suppose that the set W of nonunits of R is an ideal. Let V be an ideal such that $V \not\subset W$. Then V contains a unit, so by the argument above, V = R. Therefore, W is the unique maximal ideal in R.

 (\Longrightarrow) Suppose that R has only one maximal ideal V. By the argument above, V contains no units. Suppose that there exists $x \in R \setminus V$ such that x is not a unit. If the ideal

THE GRAD STUDENTS + KEN

 $\langle x \rangle$ generated by x is proper, then it must be a subset of V, a contradiction showing that $\langle x \rangle = M$. Thus, $\langle x \rangle = M$, so $1 \in \langle x \rangle$ implies that x is a unit, a contradiction to the assumption. Therefore, V is the set of all non-units in R, and this set is an ideal.

2011F Algebra #3

Let L be an algebraic extension of the field F. Show that any ring homomorphism $g: L \to L$ fixing F is an automorphism.

Proof. Note that q is automatically 1-1.

[If $g(\beta) - g(\gamma) = g(\beta - \gamma) = 0$ and $\beta \neq \gamma$, then $(\beta - \gamma)^{-1}$ exists, and $1 = g(1) = g((\beta - \gamma)^{-1}(\beta - \gamma)) = g((\beta - \gamma)^{-1})g(\beta - \gamma) = 0$, a contradiction.]

(onto) For any $\alpha \in L$. Since L is algebraic, there exists a minimal polynomial p(x) with F coefficients such that $p(\alpha) = 0$. Let $p(x) = a_0 + a_1x + \ldots + a_nx^n$. Then

$$0 = a_0 + a_1\alpha + \dots + a_n\alpha^n$$

Then

$$g(0) = g(a_0 + a_1\alpha + \dots + a_n\alpha^n)$$

= $a_0 + a_1g(\alpha) + \dots + a_ng(\alpha)^n$
= $p(g(\alpha)).$

since g is a ring homomorphism and g fixes F. Now g maps the splitting field K of p(x) over F to itself, and K is a finite-dimensional vector space over L. Since g is a ring homomorphism, it is a linear transformation from K to K (as finite-dimensional vector spaces over F), and thus since it is an isomorphism since it is 1 - 1. Thus, there exists $\beta \in K$ such that $g(\beta) = \alpha$.

13. 2013S Algebra Exam

2013S Algebra Exam #6

Let G be a group of order 56. Prove that G has a nontrivial normal subgroup.

Proof. We have $|G| = 56 = 2^3 \cdot 7$. Let n_2 be the number of Sylow 2-subgroups (of order 8), and let n_7 be the number of Sylow 7-subgroups. By the third Sylow theorem ($n_p \equiv 1 \mod p$ and $n_p |\frac{|G|}{p^n}$), n_2 is an odd number that divides 7 (and thus is 1 or 7), and $n_7 \equiv 1 \mod 7$ and divides 8 (and thus is 1 or 8). If $n_7 = 1$, the single Sylow 7-subgroup is equal to all of its conjugates and thus is normal, and we are done. Suppose instead that $n_7 = 8$. Then there are $6 \cdot 8 = 48$ elements of order 7. The Sylow 2-subgroup contributes 8 additional elements, each of whose orders divides 8. If also G had more than one Sylow 2-subgroup (i.e. 7 of them), then there would be more than 48 + 8 = 56 elements, a contradiction. Thus, if $n_7 = 8$, $n_2 = 1$, in which case the Sylow 2-subgroup would have to be normal.

14. 2013F Algebra Exam

2013F Algebra Exam #1

Let G be a group, and for each g in G, define a function $\phi_g : G \longrightarrow G$ by the formula $\phi_g(x) = gxg^{-1}$ for every x in G.

(a) Prove that the set $\text{Inn}(G) = \{\phi_g : g \in G\}$ is a group under function composition.

PRELIM EXAM SOLUTIONS

(b) Let Z(G) denote the center of G. Prove that G/Z(G) is isomorphic to Inn(G).

Proof. (a) If 1 is the identity in G, observe that ϕ_1 is the identity, because

$$\phi_1 \circ \phi_g(x) = \phi_1(gxg^{-1}) = 1gxg^{-1}1 = gxg^{-1} = \phi_g(x)$$

for every $x \in G$. Similarly $\phi_g \circ \phi_1 = \phi_g$. Thus ϕ_1 is the identity in Inn(G).

Next, for all $g \in G$, observe that for all $x \in G$,

$$\phi_g \circ \phi_{g^{-1}}(x) = \phi_g(g^{-1}xg) = g^{-1}gxg^{-1}g = 1x1 = \phi_1(x),$$

so inverses exist.

Also, for $g_1, g_2 \in G$,

$$\phi_{g_1} \circ \phi_{g_2}(x) = \phi_{g_1}(g_2 x g_2^{-1}) = g_1 g_2 x g_2^{-1} g_1^{-1} = (g_1 g_2) x (g_1 g_2)^{-1} = \phi_{g_1 g_2}(x)$$

Thus, the set Inn(G) is closed under multiplication.

Finally, the associative property also holds: for any $g_1, g_2, g_3 \in G$, we have by the multiplication formula above and the associative property in G,

$$(\phi_{g_1} \circ \phi_{g_2}) \circ \phi_{g_3} = \phi_{g_1g_2} \circ \phi_{g_3} = \phi_{(g_1g_2)g_3} = \phi_{g_1(g_2g_3)} = \phi_{g_1} \circ \phi_{g_2g_3} = \phi_{g_1} \circ (\phi_{g_2} \circ \phi_{g_3}).$$

(b) Define the surjective homomorphism $\psi : G \to \text{Inn}(G)$ defined by $\psi(g) = \phi_g$. We showed above that $\phi_{g_1} \circ \phi_{g_2} = \phi_{g_1g_2}$ for all $g_1, g_2 \in G$, proving that it is indeed a homomorphism, and it is clearly surjective. Observe that

$$\ker \psi = \{z \in G : \psi(z)(g) = g \text{ for all } g \in G\}$$
$$= \{z \in G : zgz^{-1} = g \text{ for all } g \in G\}$$
$$= \{z \in G : zg = gz \text{ for all } g \in G\} = Z(G)$$

Then, by the first isomorphism theorem for groups,

$$\operatorname{Inn}(G) \cong G/Z(G).$$

			٦
н			
н			
-	_	_	

2013F Algebra Exam #2

Let H be a finite subgroup of G. Prove that the double coset

$$HxH \stackrel{\text{def}}{=} \{h_1xh_2 : h_1, h_2 \in H\}$$

has cardinality |H| for all x if and only if H is a normal subgroup of G.

Proof. Suppose H is normal and $x \in G$. This implies that xH = Hx. Take any element $h_1xh_2 \in HxH$. Then there exists an $h_3 \in H$ such that $h_1x = xh_3$, so that $h_1xh_2 = xh_3h_2 \in xH$. Thus, $HxH \subseteq xH$. Also, for any $xh_4 \in xH$, $xh_4 = exh_4 \in HxH$, where e is the identity. Thus $xH \subseteq HxH$. Thus, xH = HxH, so |xH| = |HxH|. Also, |xH| = |H|, by the following argument. Define $\phi : H \to xH$ by $\phi(h) = xh$. Note that ϕ is clearly onto. Also, if $\phi(h_5) = \phi(h_6)$ for some $h_5, h_6 \in H$, we have $xh_5 = xh_6$, which implies $h_5 = x^{-1}xh_5 = x^{-1}xh_6 = h_6$, so ϕ is one-to-one and thus a bijection. Therefore, |xH| = |H|, and we are done with the first part.

Next, suppose that |HxH| = |H| for all $x \in G$. Again, for any $x \in G$, |H| = |xH| = |exH|. Since $exH \subseteq HxH$, |H| = |exH| = |HxH|, so since $exH \subseteq HxH$ and HxH is finite, we must have xH = HxH. Similarly, Hx = HxH. Thus, xH = Hx for every $x \in G$, and therefore H is normal.

2013F Algebra Exam #3

Find a product of cyclic groups that is isomorphic to the factor group

$$(\mathbb{Z}_4 \times \mathbb{Z}_6) / \langle (2,3) \rangle.$$

Proof. Note that $H = \langle (2,3) \rangle = \{(0,0), (2,3)\}$. Then $|\mathbb{Z}_4 \times \mathbb{Z}_6 / \langle (2,3) \rangle| = 24/2 = 12$, and the group is abelian. Observe that (1,1) + H has order 12 in $(\mathbb{Z}_4 \times \mathbb{Z}_6) / H$. Thus, $(\mathbb{Z}_4 \times \mathbb{Z}_6) / H \cong \mathbb{Z}_{12} \cong \mathbb{Z}_4 \times \mathbb{Z}_3$.

2013F Algebra Exam #4

For an $n \times n$ matrix A and eigenvalue λ_0 , prove the dimension of the eigenspace for λ_0 is at most its multiplicity as a root of the characteristic polynomial.

Proof. Recall that the eigenspace corresponding to λ_0 is

$$E_{\lambda_0} = \{ v \in \mathbb{C}^n : (A - \lambda_0 I)v = 0 \}.$$

Let $\{a_1, ..., a_\ell\}$ be a basis of E_{λ_0} . Choose the $b_1, ..., b_{n-\ell}$ so that $\{a_1, ..., a_\ell, b_1, ..., b_{n-\ell}\}$ is a basis of \mathbb{C}^n . Letting $B = C^{-1}AC$, where C is the matrix with these basis vectors as column vectors. Then B has the same characteristic polynomial as A, since $\det(A - \lambda I) =$ $\det(C^{-1}(A - \lambda I)C) = \det(C^{-1}AC - C^{-1}\lambda IC) = \det(C^{-1}AC - C^{-1}\lambda IC) = \det(C^{-1}AC - \lambda I)$ $det(B - \lambda I)$. Then we have $Aa_i = \lambda_0 a_i$ for $1 \leq j \leq \ell$. So B has the form

$$B = \left(\begin{array}{cc} \lambda_0 I & D\\ 0 & G \end{array}\right)$$

2013F Algebra Exam #5

Let I be a proper nontrivial prime ideal in a principal ideal domain D. Prove that I is a maximal ideal in D.

Proof. Since I is an ideal in a PID, I is principal, so $I = \langle a \rangle$ for some nonzero a. Suppose that I is not maximal, i.e. that there exists another ideal B such that $I \subsetneq B \subsetneq D$. Then $B = \langle b \rangle$, and $a \in B$ and $b \notin I$. Then a = bd for some $d \in D$. But a is in a prime ideal, so either b or d is in I. So d is in I. Thus d = ar for some $r \in D$. Then a = bar, so a = abr, or a(1 - br) = 0. Since D is an integral domain, and since $a \neq 0$, br = 1, so $\langle b \rangle = B = D$. Contradiction.

2013F Algebra Exam #6

Let V be an inner product space. Let W be a subspace of V and let W^{\perp} denote its orthogonal complement.

Proof. (a)

With notation as above, let $\{b_1, ..., b_m\}$ be an orthonormal basis for W, and complete this basis to an orthonormal basis of V: $\{b_1, ..., b_m, e_1, ..., e_r\}$; we can always do this with the

Gramm-Schmidt orthonormalization procedure. Then $W = \text{span} \{b_1, ..., b_m\}$. The element

$$v = \sum_{j=1}^{m} w_j b_j + \sum_{i=1}^{r} v_i e_i$$

is an element of W^{\perp} if and only if $0 = \langle b_a, v \rangle$ for every a such that $1 \leq a \leq m$. This means

$$0 = \langle b_a, v \rangle = \left\langle b_a, \sum_{j=1}^m w_j b_j + \sum_{i=1}^r v_i e_i \right\rangle$$
$$= w_a$$

for $1 \leq a \leq m$, so that $W^{\perp} = \operatorname{span} \{e_1, ..., e_r\}.$

Employing the same reasoning with the subspace W^{\perp} , we see that $(W^{\perp})^{\perp} = \text{span} \{b_1, ..., b_m\} = W$.

(b)

For any

$$p(x) = \sum_{j=0}^{n} a_j x^j \in W^{\perp},$$

for all $m \ge 1$, we have

$$0 = \int_{-1}^{1} p(x) x^{2m} dx$$

= $\sum_{j=0}^{n} a_j \int_{-1}^{1} x^{2m+j} dx = \sum_{j=0}^{n} a_j \frac{1}{2m+j+1} \left(1 - (-1)^{2m+j+1} \right)$
= $\sum_{j \text{ even}} a_j \frac{2}{2m+j+1},$

which implies only that $a_j = 0$ for j even. Thus, $\{x, x^3, x^5, ...\}$ is a basis for W^{\perp} . Next, if p as above is in $(W^{\perp})^{\perp}$, observe that for $m \ge 1$

$$0 = \int_{-1}^{1} p(x) x^{2m-1} dx$$

= $\sum_{j=0}^{n} a_j \int_{-1}^{1} x^{2m+j-1} dx = \sum_{j=0}^{n} a_j \frac{1}{2m+j} \left(1 - (-1)^{2m+j} \right)$
= $\sum_{j \text{ odd}} a_j \frac{2}{2m+j},$

which implies only that $a_j = 0$ for j odd. Thus, $\{1, x^2, x^4, x^6, ...\}$ is a basis for $(W^{\perp})^{\perp}$. Since $1 \in (W^{\perp})^{\perp}$ and $1 \notin W$, we see that $W \subsetneqq (W^{\perp})^{\perp}$.

2013 F
 Algebra Exam#7

Suppose K is a finite extension field of E and that E is a finite extension field of F. Prove that K is a finite extension field of F, and that [K : F] = [K : E] [E : F].

2013 F
 Algebra Exam#8

Compute the Galois group of the splitting field of $x^4 + x + 1$ over \mathbb{F}_2 and over \mathbb{F}_3 , the finite fields with 2 and 3 elements, respectively.

Proof. Consider \mathbb{F}_2 . We first show that $x^4 + x + 1$ is irreducible over \mathbb{F}_2 . We check that x = 0 and x = 1 are not zeros, so there are no linear factors. Next, if it factors into quadratics, then

$$(x^{2} + ax + 1)(x^{2} + bx + 1) = x^{4} + x + 1$$

for some $a, b \in \{0, 1\}$. This implies a + b = 0, a + b = 1, which is a contradiction.

It follows that the splitting field is \mathbb{F}_{16} and that the Galois group is cyclic of order 4 (with generator $y \mapsto y^2$).

Consider \mathbb{F}_3 . Then x = 1 is a root, and we have

$$x^{4} + x + 1 = (x - 1) (x^{3} + x^{2} + x + 2),$$

but we can see that $x^3 + x^2 + x + 2$ has no linear factors by plugging in 0, 1, 2 and is thus irreducible. It follows that the splitting field is \mathbb{F}_{27} and that the Galois group is cyclic of order 3 (with generator $y \mapsto y^3$).

Remark 1. The Theorems we are using in the above are these:

- For p prime, the only extension fields of \mathbb{F}_{p^k} are \mathbb{F}_{p^n} for $n \geq k$. By definition, \mathbb{F}_{p^k} is the splitting field of $x^{p^k} x$ over \mathbb{F}_p (note the polynomial is reducible).
- The Galois group of $\mathbb{F}_{p^{kn}}$ over the base field \mathbb{F}_{p^k} is cyclic of order n, and it is generated by the Frobenius automorphism $x \mapsto x^{p^k}$.
- If $f(x) \in \mathbb{F}_p[x]$ is an irreducible polynomial of degree m, then the Galois group of f(x) over $\mathbb{F}_p[x]$ is cyclic of degree m (generated by $y \mapsto y^p$), and \mathbb{F}_{p^m} is the splitting field.

(The reason is that we know that the splitting field is \mathbb{F}_{p^k} for some k > 1, and we know the Galois group is cyclic and generated by the Frobenius automorphism $y \mapsto y^p$. This is a normal extension, so if α is a root of f(x), then all the roots of f are in $\mathbb{F}_p(\alpha)$, so $\mathbb{F}_p(\alpha)$ is the splitting field. But then the degree of the splitting field is m, so the order of the Galois group is m; thus k = m.)

• Same as the above is true if the prime p is replaced by p^j for some $j \ge 1$.

15. 2014S Algebra Exam

2014S Algebra Exam #3

Every finite integral domain D is a field.

Proof. Let $D = \{0, a_0 = 1, a_1, ..., a_n\}$. Let $a \in D$ such that $a \neq 0$. We need to show there exists $b \in D$ such that ab = ba = 1. Consider the elements $aa_0, aa_1, ..., aa_n$. Suppose $aa_i = aa_j$ for some $i \neq j$. Then $a(a_i - a_j) = 0$. We assumed $a \neq 0$ and have that $a_i - a_j \neq 0$. But D has no zero-divisors, so this is a contradiction. Thus, multiplication by a is a 1-1 map of the finite set $D - \{0\}$ to itself and thus is a bijection. Therefore, there exists $b \in D$ such that $ab = a_0 = 1$.

2014S Algebra Exam #4

For matrices A and B where AB is defined, prove that $rank(AB) \leq \min \{rank(A), rank(B)\}$.

Proof. Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation defined by $T_A(x) = Ax$, and similarly define $T_B : \mathbb{R}^p \to \mathbb{R}^n$. Then $rank(AB) = \dim (T_A \circ T_B(\mathbb{R}^p)) \leq \dim (T_A(\mathbb{R}^n)) = rank(A)$. Next, we have the following lemma:

Lemma: For any linear transformation $T: V \to W$ of finite dimensional vector spaces, $\operatorname{rank}(T) = \dim(T(V)) \leq \dim(V)$.

Proof of Lemma: Given a basis $b_1, ..., b_n$ of V, $\{T(b_1), ..., T(b_n)\}$ spans T(V), so any basis of T(V) has $\leq n$ elements. \Box

basis of T(V) has $\leq n$ elements. \Box Thus, applying the lemma to $T_A: T_B(\mathbb{R}^p) \to \mathbb{R}^m$, $rank(AB) = \dim(T_A(T_B(\mathbb{R}^p))) \leq \dim(T_B(\mathbb{R}^p)) = rank(B)$. The result follows. \Box

2014S Algebra Exam #5

Prove that every finite multiplicative subgroup of a field is cyclic.

Proof. Let G be a finite multiplicative subgroup of a field \mathbb{F} ; G is necessarily abelian. Let $m = \max\{|g| : g \in G\}$. (Here |g| means the order of g.) Then m||G|, so that $m \leq |G|$. **Claim:** $g^m = 1$ for all $g \in G$.

Proof of Claim: By the Fundamental Theorem of Finitely Generated Abelian Groups, G is isomorphic to $\mathbb{Z}_{p_1^{r_1}} \times \mathbb{Z}_{p_2^{r_2}} \times \ldots \times \mathbb{Z}_{p_k^{r_k}}$, where p_1, \ldots, p_k are not necessarily distinct primes, and r_1, \ldots, r_k are positive integers. The maximum order of an element of this group is the least common multiple of the integers $p_1^{r_1}, \ldots, p_k^{r_k}$; one can explicitly construct an element of that order, and further one can show that any element of the group has an order that is a factor of this maximum order. \Box

By the Claim, every $g \in G$ is a solution to the equation $x^m - 1$, but $x^m - 1$ has at most m solutions in \mathbb{F} . Therefore, $|G| \leq m$. Thus |G| = m, and there exists $h \in G$ such that |h| = m. Hence, G is cyclic.

2014 S
 Algebra Exam#8

Let G be a finite group, let R^{\times} be the multiplicative group of units in a ring R, and let $\phi : G \to R^{\times}$ be a nontrivial homomorphism. Prove that $\sum_{g \in G} \phi(g)$ is either 0 or a zero divisor in R.

Proof. Consider $\left(\sum_{g \in G} \phi(g)\right) \phi(h)$, where $h \in G$ and $\phi(h) \neq 1$. Since ϕ is a ring homomorphism,

$$\left(\sum_{g \in G} \phi(g) \right) \phi(h) = \sum_{g \in G} \phi(g) \phi(h)$$
$$= \sum_{g \in G} \phi(gh)$$
$$= \sum_{g' \in G} \phi(g'),$$

since right multiplication $r_h : G \to G$ by h permutes the elements of G. (If $r_h(a) = r_h(b)$ for any $a, b \in G$, then ah = bh, so a = b by right-multiplying by h^{-1} . So r_h is an injection and thus a bijection.) Thus,

$$0 = \left(\sum_{g \in G} \phi(g)\right) \phi(h) - \left(\sum_{g \in G} \phi(g)\right)$$
$$= \left(\sum_{g \in G} \phi(g)\right) (\phi(h) - 1).$$

Thus, $\sum_{g \in G} \phi(g)$ is a zero divisor.