Topology Preliminary Exam

August 2016

INSTRUCTIONS: Work all eight problems. Justify your work. Each problem is worth 10 points. You have four hours to complete the exam.

- 1. Let \mathcal{D} be the collection of subsets of \mathbb{Z}_+ satisfying the following property: a subset U is in \mathcal{D} if and only if $n \in U$ implies that all the divisors of n are in U.
 - (a) Let $\mathcal{T}_1 = \mathcal{D} \cup \emptyset$. Prove that \mathcal{T}_1 is a topology on \mathbb{Z}_+ .
 - (b) Let \mathcal{T}_2 be the topology \mathbb{Z}_+ inherits from \mathbb{R} as a subspace. Does $\mathcal{T}_1 = \mathcal{T}_2$? If not, is one of these topologies finer than the other one?
- 2. Prove that every compact Hausdorff space is regular.
- 3. Call a subset U of a topological space Y regularly open if U is equal to the interior of its closure in Y.
 - (a) Show that the intersection of two regularly open sets is regularly open.
 - (b) Give an example to show that the union of two regularly open sets is not necessarily regularly open.
- 4. (a) Prove that if a topological space is path connected, then it is connected.
 - (b) Prove or disprove: if a topological space is connected, then it is path connected.
- 5. Let x_0 be a point in a topological space X.
 - (a) Define the fundamental group $\pi_1(X, x_0)$.
 - (b) Prove that the group operation on $\pi_1(X, x_0)$ is well-defined.
- 6. Let X be the topological space obtained from \mathbb{R}^3 by removing the x-axis and the y-axis. Compute the homology groups of X.
- 7. Fix a point x on a compact surface S. Compute the relative homology groups $H_*(S, S \{x\})$.
- 8. Let K be the Klein bottle, and let T be the two-dimensional torus.
 - (a) Prove or disprove: there is a covering map from K to T.
 - (b) Prove or disprove: there is a covering map from T to K.