Preliminary Topology Exam August 22, 2014

- 1. (a) Let X be a compact topological space, let Y be a Hausdorff space, and suppose that $f: X \longrightarrow Y$ is a continuous bijection. Prove that f is a homeomorphism.
 - (b) Show by example that if we do not require X to be compact in (a), then f is not necessarily a homeomorphism.
- 2. Let $C([0,\infty))$ denote the space of continuous real-valued functions on the interval $[0,\infty)$. Consider the topology generated by sets of the form

$$U\left(f,\delta\right) = \left\{g \in C\left(\left[0,\infty\right)\right) : \sum_{i=0}^{\infty} \left|f\left(i\right) - g\left(i\right)\right| < \delta\right\}.$$

Prove or disprove that $C([0,\infty))$ is Hausdorff with this topology.

- 3. Let A be connected in a topological space X. Prove that the closure of A is connected.
- 4. Let \mathbb{R} denote the real line as a set. Let \mathcal{B} be the collection of subsets of \mathbb{R} of the following two forms
 - sets of the form $(-b, -a) \cup (a, b)$, where 0 < a < b and (a, b) denotes the usual intervals in \mathbb{R} ;
 - sets of the form $(-\infty, -c) \cup (-a, a) \cup (c, \infty)$, where 0 < a < c.
 - (a) Show that \mathcal{B} is a basis for a topology on \mathbb{R} .
 - (b) For \mathbb{R} with this topology, decide what are the point(s) of convergence, if any, for the following sequences:

i.
$$x_n = 1 - \frac{1}{n}$$

ii.
$$x_n = n$$

- 5. Compute the homology of the Klein bottle.
- 6. Let $X = \mathbb{RP}^2 \times \mathbb{RP}^2$. Compute $\pi_1(X)$, describe the universal cover \widetilde{X} , and describe the deck transformations of $\pi_1(X)$ on \widetilde{X} .
- 7. Let A be a strong deformation retract of X, and let $a_0 \in A$. Show that the inclusion $i:(A,a_0)\to (X,a_0)$ induces an isomorphism $i_*:\pi_1(A,a_0)\to \pi_1(X,a_0)$.
- 8. Let S be a surface (i.e. a compact connected 2-dimensional manifold without boundary), and let S' be S with an open disk removed. Provide examples of surfaces showing that sometimes $H_1(S) \cong H_1(S')$ is true and sometimes it is false. Support your claims with proofs.