PRELIMINARY TOPOLOGY EXAM AUGUST 16, 2012

- (1) A space is *countably compact* if every countable cover has a finite subcover. Show that if X is countably compact, then every continuous function from X to \mathbb{R} is bounded.
- (2) Let Y, Z, and A be subsets of a topological space X. Consider the following two statements:
 (a) A ∩ (Y ∪ Z) is open in the subspace topology of Y ∪ Z
 - (b) $A \cap Y$ is open in the subspace topology of Y and $A \cap Z$ is open in the subspace topology of Z.

Is it true that (2a) implies (2b)? Is it true that (2b) implies (2a)? Prove or give counterexamples.

- (3) Let X be Hausdorff and let $A \subset X$ be a compact set. Show that A is closed.
- (4) Let \mathbb{R} be the real line in the standard topology. Prove or disprove that $\mathbb{R}/(0,1)$ with the quotient topology is homeomorphic to \mathbb{R} .
- (5) Find a space X whose fundamental group is $\mathbb{Z}_2 * \mathbb{Z}$. Describe the universal cover \tilde{X} of X.
- (6) Suppose X is a connected cell complex such that $\pi_1(X)$ is presented by $\langle x, y, z \mid xyx, yz^2y^{-1} \rangle$. What is $H_1(X)$?
- (7) Suppose A, B, U, V are subspaces of a space X such that $X = A \cup B$ and $X = U \cup V$. Suppose also $A \subset U$ and $B \subset V$ and that the inclusions $A \hookrightarrow U$ and $B \hookrightarrow V$ induce isomorphisms $H_*(A) \cong H_*(U), H_*(B) \cong H_*(V)$. Show that $H_*(A \cap B) \cong H_*(U \cap V)$.
- (8) Let X be a path-connected cell complex, and let $p: X \to X$ be a covering map such that p is not injective. Prove that $\pi_1(X)$ is infinite.