Topology Preliminary Exam August 19, 2011

- Let Y be a subspace of a topological space X. Let A be a subset of Y. Let A be the closure of A in X, and let A° be the interior of A in X.
 - (a) Does the closure of A in Y equal $\overline{A} \cap Y$?
 - (b) Does the interior of A in Y equal $A^{\circ} \cap Y$?
- 2. A function $f: X \to Y$ is called *proper* if for any compact $K \subset Y$, $f^{-1}(K)$ is compact in X.
 - (a) Give an example of a continuous function that is *not* proper.
 - (b) Show that any proper function from a Hausdorff space X to a compact space Y is continuous.
- 3. Let (X, d) be a metric space, and let $A \subset X$. Show that A is closed in X if and only if there exists a continuous function $f : X \to \mathbb{R}$ such that A is the zero set of f.
- 4. Recall that a space X is *limit point compact* if every infinite subset of X has a limit point. Let \mathbb{Z}^+ denote the positive integers.

Recall that the *finite complement topology* is that generated by sets that are complements of a union of a finite number points. The *countable complement topology* is defined similarly.

- (a) Is \mathbb{Z}^+ in the finite complement topology limit point compact?
- (b) Is \mathbb{Z}^+ in the countable complement topology limit point compact?
- 5. Let X be the two-sphere $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ with the points (0, 0, 1) and (0, 0, -1) identified. Compute the integral homology groups $H_*(X)$.
- 6. Define the suspension SX of a topological space X as the quotient of $X \times [0,1]$ obtained by identifying $X \times \{0\}$ to a point and identifying $X \times \{1\}$ to a (different) point. Show that $\widetilde{H}_{k+1}(SX) \cong \widetilde{H}_k(X)$.
- 7. Let $X = \mathbb{R}P^2 \vee S^2$, and let x_0 be the join point.
 - (a) Compute $\pi_1(X, x_0)$
 - (b) Describe the universal cover of X and all possible covering transformations.
- 8. Let B^n be the closed unit ball in \mathbb{R}^n , and let $S^{n-1} \subset B^n$ be the unit sphere. Show there is no continuous map $\phi : B^n \to S^{n-1}$ that restricts to the identity on S^{n-1} .