REAL ANALYSIS PRELIMINARY EXAMINATION

JANUARY 2024

Work all 8 problems, which are worth 10 points each. Justification is required for all statements.
(1) Estimate the numerical value of the double integral

$$
\int_{0}^{1} \int_{0}^{1} e^{x^{2} y^{2}} d x d y
$$

as a sum of fractions accurate to within $1 / 100$. The final answer does not have to be simplified.
(2) Let S be the part of the paraboloid $z=x^{2}+y^{2}$ where $z \leq 1$. Evaluate the surface integral over S :

$$
\iint_{S}(3 x+4 y+5 z) d A .
$$

(3) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function of period 2π such that $f(x)=x^{3}$ for $-\pi \leq x<\pi$.
(a) Prove that the Fourier series for f has the form

$$
\sum_{n=1}^{\infty} b_{n} \sin (n x)
$$

and write an integral formula for b_{n} (do not evaluate it).
(b) Explain why the Fourier series converges pointwise for all x and find the numerical value of the Fourier series at $x=4$.
(c) Evaluate

$$
\sum_{n=1}^{\infty} b_{n}^{2}
$$

(4) Suppose that $f_{n} \in C([a, b])$ is a sequence of functions converging uniformly to a function f.
(a) Show that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} f(x) d x
$$

(b) Give an example to show that the pointwise convergence of continuous functions f_{n} to a continuous function f does not imply convergence of the corresponding integrals.
(5) Let f be differentiable on $(0, \infty)$. Assume that there is a sequence x_{n} with $x_{n} \rightarrow \infty$ such that $f\left(x_{n}\right) \rightarrow 0$. Prove that there exists a sequence y_{n} with $y_{n} \rightarrow \infty$ such that $f^{\prime}\left(y_{n}\right) \rightarrow 0$.
(6) Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}x^{4 / 3} \sin (y / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Find all points where f is differentiable.
(7) Let $E \subset \mathbb{R}$. Show that if every continuous function $f: E \rightarrow \mathbb{R}$ attains its maximum on E, then E is compact.
(8) (a) Prove that $\cos x=x$ has a unique real solution r.

Given $x_{0} \in \mathbb{R}$, consider the sequence defined by $x_{n+1}=\cos x_{n}, n=0,1,2, \ldots$..
(b) Prove that $\left(x_{n}\right)_{n \geq 0}$ converges to r.

