- (10pts.) 1. Suppose $f:[0,\infty) \longrightarrow \mathbb{R}$ is continuous and that $\lim_{x\to\infty} f(x) = 0$. Prove that f is uniformly continuous.
- (10 pts.) 2. Compute

$$\int_0^2 \int_{\sqrt{3}x}^{\sqrt{4-x^2}} (x^2 + y^2)^{3/2} \, dy \, dx.$$

(10pts.) 3. Let s_n be the *n*th partial sum of a sequence (a_n) , and suppose that

$$\lim_{n \to \infty} \left| \frac{s_{n+1}}{s_n} \right| = \frac{1}{2}.$$

Prove that $\sum a_n$ converges to zero.

- (10pts.) 4. Let K be a closed and bounded nonempty subset of \mathbb{R}^n , and let x be a point in \mathbb{R}^n . Prove that there exists a point z in K such that $||x - z|| = \inf\{||x - y|| : y \in K\}$. Is the point z necessarily unique?
- (10pts.) 5. Let $f: [0,1] \to \mathbb{R}$ be a Riemann integrable function and write ||f|| for the number

$$\left(\int_0^1 |f(x)|^2 \, dx\right)^{1/2}.$$

- a. Show that it is possible that ||f|| = 0 even if f is non-zero.
- b. Show that if ||f|| = 0, then f(x) = 0 whenever f is continuous at x.
- c. Show that if f(x) = 0 for all $x \in [0, 1]$ at which f is continuous, then ||f|| = 0.
- (10pts.) 6. Suppose that f and g are smooth functions from \mathbb{R}^3 to \mathbb{R} and let D be a solid whose boundary is a closed smooth surface Σ , oriented outward. Prove that

$$\iint_{\Sigma} (f\nabla g - g\nabla f) \cdot \vec{n} \, dS = \iiint_{D} \left(f\nabla^2 g - g\nabla^2 f \right) \, dV_{S}$$

where ∇ is the gradient, $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$, and \vec{n} is the outward unit normal vector field.

(10pts.) 7. Let (f_n) be a sequence of continuous functions on an interval [a, b], and suppose that $\sum_{n=1}^{\infty} f_n$ converges uniformly to a function f. Prove that

$$\int_{a}^{b} f(x) \, dx = \sum_{n=1}^{\infty} \left(\int_{a}^{b} f_n(x) \, dx \right).$$

- (10pts.) 8. Let $f:[0,1] \longrightarrow \mathbb{R}$ be continuous on [0,1] and differentiable on (0,1). Suppose f(0) = 0 and that f(1) = 1.
 - a. Suppose that in addition f(a) = a for some $a \in (0, 1)$. Prove that there exist at least two values of $x \in (0, 1)$ such that f'(x) = 1.
 - b. Prove that there exists a real number $c \in (0, 1)$ such that f'(c) = 2c.