(10pts.) 1. Suppose $f:[0, \infty) \longrightarrow \mathbb{R}$ is continuous and that $\lim _{x \rightarrow \infty} f(x)=0$. Prove that f is uniformly continuous.
(10pts.) 2. Compute

$$
\int_{0}^{2} \int_{\sqrt{3} x}^{\sqrt{4-x^{2}}}\left(x^{2}+y^{2}\right)^{3 / 2} d y d x
$$

(10pts.) 3. Let s_{n} be the nth partial sum of a sequence $\left(a_{n}\right)$, and suppose that

$$
\lim _{n \rightarrow \infty}\left|\frac{s_{n+1}}{s_{n}}\right|=\frac{1}{2}
$$

Prove that $\sum a_{n}$ converges to zero.
(10pts.) 4. Let K be a closed and bounded nonempty subset of \mathbb{R}^{n}, and let x be a point in \mathbb{R}^{n}. Prove that there exists a point z in K such that $\|x-z\|=\inf \{\|x-y\|: y \in K\}$. Is the point z necessarily unique?
(10pts.) 5. Let $f:[0,1] \rightarrow \mathbb{R}$ be a Riemann integrable function and write $\|f\|$ for the number

$$
\left(\int_{0}^{1}|f(x)|^{2} d x\right)^{1 / 2}
$$

a. Show that it is possible that $\|f\|=0$ even if f is non-zero.
b. Show that if $\|f\|=0$, then $f(x)=0$ whenever f is continuous at x.
c. Show that if $f(x)=0$ for all $x \in[0,1]$ at which f is continuous, then $\|f\|=0$.
(10pts.) 6. Suppose that f and g are smooth functions from \mathbb{R}^{3} to \mathbb{R} and let D be a solid whose boundary is a closed smooth surface Σ, oriented outward. Prove that

$$
\iint_{\Sigma}(f \nabla g-g \nabla f) \cdot \vec{n} d S=\iiint_{D}\left(f \nabla^{2} g-g \nabla^{2} f\right) d V
$$

where ∇ is the gradient, $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$, and \vec{n} is the outward unit normal vector field.
(10pts.) 7. Let $\left(f_{n}\right)$ be a sequence of continuous functions on an interval $[a, b]$, and suppose that $\sum_{n=1}^{\infty} f_{n}$ converges uniformly to a function f. Prove that

$$
\int_{a}^{b} f(x) d x=\sum_{n=1}^{\infty}\left(\int_{a}^{b} f_{n}(x) d x\right)
$$

(10pts.) 8. Let $f:[0,1] \longrightarrow \mathbb{R}$ be continuous on $[0,1]$ and differentiable on $(0,1)$. Suppose $f(0)=0$ and that $f(1)=1$.
a. Suppose that in addition $f(a)=a$ for some $a \in(0,1)$. Prove that there exist at least two values of $x \in(0,1)$ such that $f^{\prime}(x)=1$.
b. Prove that there exists a real number $c \in(0,1)$ such that $f^{\prime}(c)=2 c$.

