Name:

Time: 4 hours

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total:	80	

Page 1 of 2
(10pts.) 1. Evaluate

$$
\oint_{C}\left(y^{2}+\arctan \left(x^{3}\right)\right) d x+\left(3 x y-e^{y^{4}}\right) d y
$$

where C is the boundary of the square with vertices $(0,0),(1,0),(1,1)$, and $(0,1)$, traversed counterclockwise.
(10pts.) 2. Find the maximum and minimum values of $x^{2}+y^{2}-2 x+4 y+3$ on the closed disk $x^{2}+y^{2} \leq 9$, and state where they occur.
(10pts.) 3. Suppose $0<x_{1}<1$ and $x_{n+1}=1-\sqrt{1-x_{n}}$ if n is a positive integer greater than 1 . Prove that the sequence $\left(x_{n}\right)$ has limit 0 , and that $\lim _{n \rightarrow \infty} x_{n+1} / x_{n}=1 / 2$.
(10pts.) 4. Let $\left(x_{n}\right)$ be a sequence of real numbers. Prove that $\lim _{n \rightarrow \infty} x_{n}=L$ if and only if every subsequence of $\left(x_{n}\right)$ has in turn a subsequence that converges to L.
(10pts.) 5. Suppose f is continuous on $[0,1]$. Set $f_{0}=f$, and inductively define a sequence $\left\{f_{n}\right\}$ by the formula

$$
f_{n+1}(x)=\int_{0}^{x} f_{n}(t) d t
$$

Prove that $\left\{f_{n}\right\}$ converges uniformly to the zero function on $[0,1]$.
(10pts.) 6. Suppose $\left(a_{n}\right)$ is a sequence of positive real numbers and that

$$
p=\lim _{n \rightarrow \infty} \frac{\log \left(1 / a_{n}\right)}{\log n}
$$

is a real number.
(a) Prove that $\sum_{n} a_{n}$ converges if $p>1$.
(b) Prove that $\sum_{n} a_{n}$ diverges if $p<1$.
(10pts.) 7. Let E be a bounded subset of of \mathbb{R}^{n} with nonempty interior. Prove that there is a strictly positive number r such that E contains some open ball B of radius r, but E contains no open ball of radius strictly greater than r.
(10pts.) 8. Let $f: I \rightarrow \mathbb{R}$ be differentiable, where I is an open interval containing $[0,1]$. Prove that if f^{\prime} is continuous on $[0,1]$, then for all $\epsilon>0$ there is an $h_{0}>0$ such that whenever $0<|h|<h_{0}$ and $x, x+h \in[0,1]$, it follows that

$$
\left|\frac{f(x+h)-f(x)}{h}-f^{\prime}(x)\right|<\epsilon .
$$

