Name: _____

Time: 4 hours

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total:	80	

(10pts.) 1. Evaluate

$$\oint_C (y^2 + \arctan(x^3)) \, dx + (3xy - e^{y^4}) \, dy,$$

where C is the boundary of the square with vertices (0,0), (1,0), (1,1), and (0,1), traversed counterclockwise.

- (10pts.) 2. Find the maximum and minimum values of $x^2 + y^2 2x + 4y + 3$ on the closed disk $x^2 + y^2 \le 9$, and state where they occur.
- (10pts.) 3. Suppose $0 < x_1 < 1$ and $x_{n+1} = 1 \sqrt{1 x_n}$ if *n* is a positive integer greater than 1. Prove that the sequence (x_n) has limit 0, and that $\lim_{n\to\infty} x_{n+1}/x_n = 1/2$.
- (10pts.) 4. Let (x_n) be a sequence of real numbers. Prove that $\lim_{n\to\infty} x_n = L$ if and only if every subsequence of (x_n) has in turn a subsequence that converges to L.
- (10pts.) 5. Suppose f is continuous on [0, 1]. Set $f_0 = f$, and inductively define a sequence $\{f_n\}$ by the formula

$$f_{n+1}(x) = \int_0^x f_n(t)dt$$

Prove that $\{f_n\}$ converges uniformly to the zero function on [0, 1].

(10pts.) 6. Suppose (a_n) is a sequence of positive real numbers and that

$$p = \lim_{n \to \infty} \frac{\log(1/a_n)}{\log n}$$

is a real number.

- (a) Prove that $\sum_{n} a_n$ converges if p > 1.
- (b) Prove that $\sum_{n} a_n$ diverges if p < 1.
- (10pts.) 7. Let E be a bounded subset of \mathbb{R}^n with nonempty interior. Prove that there is a strictly positive number r such that E contains some open ball B of radius r, but E contains no open ball of radius strictly greater than r.
- (10pts.) 8. Let $f: I \to \mathbb{R}$ be differentiable, where I is an open interval containing [0, 1]. Prove that if f' is continuous on [0, 1], then for all $\epsilon > 0$ there is an $h_0 > 0$ such that whenever $0 < |h| < h_0$ and $x, x + h \in [0, 1]$, it follows that

$$\left|\frac{f(x+h) - f(x)}{h} - f'(x)\right| < \epsilon.$$