REAL ANALYSIS PRELIMINARY EXAMINATION

AUGUST 28, 2017
(1) State and prove the Ratio Test for convergence of an infinite series $\sum a_{n}$.
(2) (a) State the theorem for changing variables in the integral

$$
\iiint_{Q} f(x, y, z) d x d y d z
$$

where Q is a region in \mathbb{R}^{3}.
(b) Find the volume of the solid ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1
$$

(3) Let $g(x)=\sin \left(x^{5}+x^{7}\right)$. Find $\frac{\partial^{17} g}{\partial x^{17}}(0)$.
(4) Let $f(x)=|x|^{\alpha}$, where $\alpha \in \mathbb{R}$. For which $\alpha>0$ is f differentiable at 0 ?
(5) Consider the function $f:[0,1] \rightarrow[0,1]$ that assigns to x the value 0 if x is irrational, and the value $\frac{1}{q^{2}}$ if x is a rational number of the form $\frac{p}{q}$, where p, q are positive integers without common factors.
(a) Show that f is continuous at $x_{0} \in[0,1]$ if and only if x_{0} is irrational.
(b) Prove or disprove that f is Riemann integrable.
(6) Let $\left(f_{n}: \mathbb{R} \rightarrow \mathbb{R}\right)_{n \geq 1}$ be a sequence of differentiable functions that converge uniformly to f on \mathbb{R}.
(a) Must the sequence of derivatives $\left(f_{n}^{\prime}\right)_{n \geq 1}$ also converge uniformly on \mathbb{R} ?
(b) Must $\left(\int_{0}^{x} f_{n}(t) d t\right)_{n \geq 1}$ converge to $\int_{0}^{x} f(t) d t$ for $x \in[0,1]$? If so, must the convergence be uniform on $[0,1]$?
(7) Let $\Omega=\left\{(x, y, z) \in \mathbb{R}^{3}: x>0, y>0, z>0\right\}$ and $f: \Omega \rightarrow \mathbb{R}$ given by

$$
f(x, y, z)=y x^{z}+z x^{y} .
$$

(a) Explain why f is differentiable.
(b) Find the gradient of f at $(1,1,1)$.
(c) Near $(1,1,1)$, can one write z as a function of x and y in the relation $f(x, y, z)-2=0$?
(8) Let the function $h: \mathbb{R} \rightarrow \mathbb{R}$ be periodic with period 2π and have a continuous second derivative everywhere. Prove there exists a constant C independent of n such that the Fourier coefficients of h satisfy

$$
\left|a_{n}\right| \leq \frac{C}{n^{2}}, \quad\left|b_{n}\right| \leq \frac{C}{n^{2}}, \quad n \geq 1
$$

