REAL ANALYSIS PRELIMINARY EXAMINATION

AUGUST 28, 2017

- (1) State and prove the Ratio Test for convergence of an infinite series $\sum a_n$.
- (2) (a) State the theorem for changing variables in the integral

$$\iiint_Q f(x,y,z) dx \, dy \, dz$$

where Q is a region in \mathbb{R}^3 .

(b) Find the volume of the solid ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1.$$

(3) Let $g(x) = \sin(x^5 + x^7)$. Find $\frac{\partial^{17}g}{\partial x^{17}}(0)$.

- (4) Let $f(x) = |x|^{\alpha}$, where $\alpha \in \mathbb{R}$. For which $\alpha > 0$ is f differentiable at 0?
- (5) Consider the function $f:[0,1] \to [0,1]$ that assigns to x the value 0 if x is irrational, and the value $\frac{1}{q^2}$ if x is a rational number of the form $\frac{p}{q}$, where p,q are positive integers without common factors.
 - (a) Show that f is continuous at $x_0 \in [0, 1]$ if and only if x_0 is irrational.
 - (b) Prove or disprove that f is Riemann integrable.
- (6) Let $(f_n : \mathbb{R} \to \mathbb{R})_{n \ge 1}$ be a sequence of differentiable functions that converge uniformly to f on \mathbb{R} .
 - (a) Must the sequence of derivatives $(f'_n)_{n\geq 1}$ also converge uniformly on \mathbb{R} ?

(b) Must
$$\left(\int_0^x f_n(t) dt\right)_{n \ge 1}$$
 converge to $\int_0^x f(t) dt$ for $x \in [0, 1]$? If so, must the convergence be uniform on $[0, 1]$?

(7) Let
$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : x > 0, y > 0, z > 0\}$$
 and $f : \Omega \to \mathbb{R}$ given by $f(x, y, z) = yx^z + zx^y$.

- (a) Explain why f is differentiable.
- (b) Find the gradient of f at (1, 1, 1).
- (c) Near (1, 1, 1), can one write z as a function of x and y in the relation f(x, y, z) 2 = 0?
- (8) Let the function $h : \mathbb{R} \to \mathbb{R}$ be periodic with period 2π and have a continuous second derivative everywhere. Prove there exists a constant C independent of n such that the Fourier coefficients of h satisfy

$$|a_n| \le \frac{C}{n^2}, \qquad |b_n| \le \frac{C}{n^2}, \qquad n \ge 1.$$