REAL ANALYSIS PRELIM EXAM

AUGUST 23, 2016

- (1) Suppose (a_n) is a sequence of real numbers such that $0 < a_n < 1$ for all n. Show that $\sum a_n$ is convergent if and only if $\sum \arcsin a_n$ is convergent.
- (2) Let $p: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that $\lim_{x \to \infty} p(x)$ and $\lim_{x \to \infty} p'(x)$ exist. Prove that $\lim_{x \to \infty} p'(x) = 0$.
- (3) Let $g: \mathbb{R}^n \to \mathbb{R}$ be a continuous function that is not the zero function.
 - (a) Prove that there exists a ball $B_{\varepsilon}(x_0)$ of radius $\varepsilon > 0$ centered at some $x_0 \in \mathbb{R}^n$ such that $\int_{B_{\varepsilon}(x_0)} g(x) dx \neq 0$.
 - (b) Suppose that the condition that g is continuous is replaced with g being Riemann integrable. Determine whether or not the conclusion of (a) is still valid.
- (4) Let $f: [-1,1] \to \mathbb{R}$ be any continuous function, and define $h: [0,1] \to \mathbb{R}$ by h(0) = f(0) and

$$h(x) = \inf_{-x < t < x} f(t).$$

- (a) Prove that h is decreasing.
- (b) Prove or disprove that h is necessarily continuous.
- (5) Let f and g be two Riemann integrable functions on [a, b].
 - (a) Prove or disprove that $h(x) = \max\{f(x), g(x)\}$ is Riemann integrable.
 - (b) Answer the same question as (a) when f and g are two functions on $[0, \infty)$ that are improper Riemann integrable.
- (6) Justify your answers to the following questions with proof.
 - (a) Does there exist a continuous function $g: \mathbb{R} \to (0, 1)$ that is 1-1 and onto?
 - (b) Does there exist a continuous function $g: \mathbb{R} \to [0,1]$ that is 1-1 and onto?
- (7) A real-valued function f(x) is *convex* on an interval I if, for all $a, b \in I$ and $t \in [0, 1]$,

$$f((1-t)a + tb) \le (1-t)f(a) + tf(b).$$

Prove that if f(x) is convex on I, then $e^{f(x)}$ is also convex on I.

(8) Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $F(x, y) = (y + yx^4, x^2 + y^2 - 16)$.

- (a) Prove that there exists $\varepsilon > 0$ such that for every (u, v) in the ball $B_{\varepsilon}(0, 0)$ of radius ε centered at the origin, the set $F^{-1}\{(u, v)\}$ consists of two points.
- (b) Show that the following statement is false: "For every $(u,v) \in \mathbb{R}^2$, the set $F^{-1}\{(u,v)\}$ consists of two points."