Preliminary Real Analysis Exam

(1) Let
$$f(x) = \sum_{n=0}^{\infty} \frac{x^{\frac{5n}{3}}}{(n!)^2}$$
 for $x \in [0, 1]$. Prove that $f(x)$ is continuous.

- (2) Evaluate the integral $\iint_{S} (y\mathbf{i} + y\mathbf{j} + z\mathbf{k}) \cdot \mathbf{n} \, dS$, where S is the surface $\{(x, y, z) : x^2 + y^2 = z, z \leq 4\}$ and \mathbf{n} is the unit normal to S that points away from the z axis.
- (3) Consider a function $f : \mathbb{R}^2 \to \mathbb{R}$.
 - (a) State the definition of differentiability of f at the point (a, b).
 - (b) Prove that if f has continuous first order partial derivatives in a neighborhood of (a, b), then f is differentiable at (a, b).
- (4) (a) Let f be a nonnegative, continuous function on the nonnegative reals. For a positive integer n, let $I_n = \int_0^n f(x) \, dx$. Prove that $\int_0^\infty f(x) \, dx$ converges if and only if the sequence (I_n) converges.
 - (b) Show that the conclusion in (a) may be false if the hypothesis that f is nonnegative is dropped.
- (5) Let f be twice continuously differentiable. Prove that, given x and h, there exists θ such that

$$f(x+h) - 2f(x) + f(x-h) = f''(\theta)h^2.$$

(6) Let f(x) be infinitely differentiable and odd. Suppose the Fourier series

$$a_0 + \sum_{n=1}^{\infty} \left(a_n \cos 2\pi nx + b_n \sin 2\pi nx \right)$$

converges to f(x) on (-1,0) and the Fourier series

$$c_0 + \sum_{n=1}^{\infty} \left(c_n \cos 2\pi nx + d_n \sin 2\pi nx \right)$$

converges to f(x) on (0, 1). Express the Fourier series of period 2 that converges to f(x) on (-1, 1) in terms of $\{a_n\}, \{b_n\}, \{c_n\}, \{d_n\}$.

- (7) Let S_0 be the surface $x^2 + y^2 + z^2 = 1$. Let S_1 be the surface $x^2 + y^2 z^2 = 1$. Let S_2 be the surface $x^2 y^2 z^2 = 1$. For what $i \neq j$ is there a continuous surjection $S_i \to S_j$? A short justification is sufficient in each case.
- (8) Suppose that g is a twice differentiable function on \mathbb{R} such that $|g''(x)| \leq K$. Prove that there exists a constant $C \in \mathbb{R}$ such that

$$e^{g(x)} \le C \, e^{Cx^2}.$$