Preliminary Real Analysis Exam January 20, 2012

- (1) For $k \ge 1$, suppose that $\mathbb{R}^k \setminus A$ contains no closed balls of positive radius. Prove that A is dense in \mathbb{R}^k .
- (2) (a) Compute the Taylor series at 0 for $\cos x$ and prove it converges to $\cos x$ for all real x.
 - (b) Prove the convergence is uniform on closed, finite intervals [a, b].
 - (c) Prove the convergence is not uniform on $(-\infty, \infty)$.

(3) (a) Prove that if f is differentiable at c, then $\lim_{h\to 0^+} \frac{f(c+2h) - f(c-h)}{h}$ exists. (b) Show that the converse of (a) is false.

(4) (a) Find the Fourier series of

$$f(x) = x, \ 0 \le x < 2,$$

and assume that f is periodic of period 2.

- (b) Use this Fourier series to evaluate $1 + \frac{1}{3} \frac{1}{5} \frac{1}{7} + \frac{1}{9} + \frac{1}{11} \frac{1}{13} \frac{1}{15} + \dots$
- (5) (a) Let C be the line segment from the point (x_1, y_1) to (x_2, y_2) . Prove that

$$\int_C (-ydx + xdy) = x_1y_2 - x_2y_1.$$

(b) Suppose a polygon P has vertices $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, listed in order. Prove that the area of P is

$$\frac{1}{2} \left| (x_1y_2 - x_2y_1) + (x_2y_3 - x_3y_2) + \dots + (x_{n-1}y_n - x_ny_{n-1}) + (x_ny_1 - x_1y_n) \right|$$

- (6) Suppose there is a sequence of bounded functions $f_n : [a, b] \to \mathbb{R}$.
 - (a) Suppose that f_n converges uniformly to a function $f : [a, b] \to \mathbb{R}$. Prove that f is bounded on [a, b].
 - (b) Suppose that each f_n is continuous on [a, b], and suppose that $f_n \to f$ pointwise on [a, b]. Prove or disprove that f is bounded.
- (7) For which $k \in \mathbb{R}$ is it true that $\int_{\mathbb{R}^n} |x|^k e^{-|x|} dx < \infty$?
- (8) Let $h : \mathbb{R} \to \mathbb{R}$ be a smooth function such that h'(0) = 0 and h''(0) = 1. Define $F : \mathbb{R}^n \to \mathbb{R}$ by F(x) = h(|x|). Prove that F is differentiable on \mathbb{R}^n .