Preliminary Real Analysis Exam August 24, 2012

1. Let S be the surface which bounds the half of the solid ball of radius 5 centered at the origin with $y \ge 0$. Let N be the outward unit normal to S. Over this surface, find the flux

$$\int_{S} F \cdot N \, dA$$

of the vector field $F(x, y, z) = (6z, y^2, 2x)$.

2. Prove that f is differentiable at a if and only if

$$\lim_{h \to 0} \frac{f(a+h+h^2) - f(a)}{h}$$

exists.

- 3. Let $f(x) = x^2$ for $-\pi \le x < \pi$, and assume that f is periodic of period 2π .
 - (a) Find the Fourier series of f.
 - (b) Use your series to compute $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
- 4. Consider the series $S(x) = \sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$.
 - (a) Find the interval of convergence of this series.
 - (b) Is the convergence on this interval uniform?
 - (c) Find S(1/2).
- 5. Prove that every sequence of real numbers has a monotone subsequence.
- 6. Let f be continuous on [0, 1]. For $x \in [0, 1]$, let

$$g_n(x) = \int_0^x f(y)(x-y)^n \, dy.$$

- (a) Find the pointwise limit of g_n as $n \to \infty$.
- (b) Is the convergence uniform?
- 7. Prove the Heine-Borel Theorem for \mathbb{R} : A subset $A \subset \mathbb{R}$ is closed and bounded if and only if every open cover of A has a finite subcover.
- 8. Consider the function $f(x,y) = \sqrt{|xy|}$.
 - (a) Prove or disprove that f is continuous at (x, y) = (0, 0).
 - (b) Prove or disprove that $\partial f/\partial x$ and $\partial f/\partial y$ exist at (x, y) = (0, 0).
 - (c) Prove or disprove that f is differentiable at (x, y) = (0, 0).