Real Analysis Preliminary Exam August 17, 2011

Work all eight problems, justifying your work. Each is worth 10 points. You have four hours.

(1) (a) Let a_n be a sequence of real numbers. Give the ϵ - N definition for convergence $\lim_{n \to \infty} a_n = a$.

(b) Use the definition to prove
$$\lim_{n \to \infty} \frac{5n^3 + n^2 + 1}{2n^3} = \frac{5}{2}.$$

- (2) Let S be the piece of the plane z = 4x + 6y for $0 \le x \le 1, 0 \le y \le 2$. Let C be the boundary of the surface S, oriented so that it will look counterclockwise from above. Use Stokes's Theorem to compute $\int_C (2xz \ dx 2yz \ dy)$.
- (3) Let $f : [a, b] \to \mathbb{R}$ be bounded.
 - (a) Prove or disprove: If f is Riemann integrable on [a, b], then so is f^2 .
 - (b) Prove or disprove: If f^2 is Riemann integrable on [a, b], then so is f.
- (4) Let f(x) = ∑_{n=0}[∞] a_nxⁿ converge for |x| < R.
 (a) Prove that ∑_{n=1}[∞] na_nxⁿ⁻¹ and ∑_{n=0}[∞] a_nxⁿ⁺¹/(n + 1) converge for |x| < R.
 (b) Prove that, on |x| < R, f has derivative ∑_{n=1}[∞] na_nxⁿ⁻¹ and antiderivative ∑_{n=0}[∞] a_nxⁿ⁺¹/(n + 1).
- (5) Let $(x_k)_{k\geq 1}$ be a sequence in \mathbb{R}^n . Let L be the set of limits of convergent subsequences of (x_k) . Prove that L is a closed set.
- (6) For this problem, you may use any techniques you know, but may only use the following two facts about the number e: (i) e > 0 and (ii) $\lim_{h\to 0} (e^h 1)/h = 1$ and nothing about e^x other than general facts about exponentials b^x .
 - (a) Prove that $\frac{d}{dx}e^x = e^x$.
 - (b) Estimate e to within 0.2.
- (7) Consider the function $f: [0, 1/e] \to \mathbb{R}$ defined by $f(x) = x^{1+x}$.
 - (a) Prove that the image of f is contained in [0, 1/e].
 - (b) Prove that |f(x) f(y)| < |x y| for all pairs of distinct x and y in [0, 1/e].
 - (c) Prove that there is no r < 1 such that $|f(x) f(y)| \le r|x y|$ for all x and y in [0, 1/e].

(8) Let $f : \mathbb{R} \to \mathbb{R}$ be infinitely differentiable and satisfy $|f(x)| \leq \frac{C}{1+|x|^2}$ and $|f'(x)| \leq C$ $\frac{C}{1+|x|^2}$ for some constant C. Let $g(x) = \sum_{n=-\infty}^{\infty} f(x+n)$. Let $\sum_{k=0}^{\infty} a_k \cos(2\pi kx) + \sum_{k=1}^{\infty} b_k \sin(2\pi kx)$

- be the Fourier series of g. (a) Prove that $a_0 = \hat{f}(0)$ and, for $k \ge 1$, $a_k = \hat{f}(k) + \hat{f}(-k)$ and $b_k = (\hat{f}(k) \hat{f}(-k))i$, where \hat{f} is the Fourier transform of f: $\hat{f}(y) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i x y} dx$.
- (b) Use the above to prove the Poisson summation formula:

$$\sum_{n=-\infty}^{\infty} f(n) = \sum_{n=-\infty}^{\infty} \hat{f}(n).$$