Real Analysis Preliminary Exam

August, 2023

Justification is required for all statements.

1. Let $f, g:[0,1] \rightarrow[0, \infty)$ be continuous functions such that $\sup _{0 \leq x \leq 1} f(x)=\sup _{0 \leq x \leq 1} g(x)$. Prove that there exists $x_{0} \in[0,1]$ such that $f\left(x_{0}\right)=g\left(x_{0}\right)$.
2. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{2} function satisfying $\lim _{x \rightarrow 0} \frac{\phi(x)}{x}=a$. [Note that C^{2} means that $\phi^{\prime \prime}$ exists everywhere on \mathbb{R} and is continuous.] For which $a \in \mathbb{R}$ does the series $\sum_{n=1}^{\infty} \phi\left(\frac{1}{n}\right)$ converge?
3. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} n x\left(1-x^{2}\right)^{n-1} f(x) d x=\frac{f(0)}{2}
$$

[Hint: First show that $\int_{0}^{1} n x\left(1-x^{2}\right)^{n-1} d x=\frac{1}{2}$.]
4. Is

$$
g(x)=\sum_{n=2}^{\infty}\left(\frac{x}{\ln n}\right)^{n}
$$

continuous on \mathbb{R} ? Is g uniformly continuous on \mathbb{R} ? Explain.
5. Let $G \subset \mathbb{R}^{2}$ be an open set, and suppose that $[0,1] \times[0,1] \subset G$. Show that there exists $\varepsilon>0$ such that

$$
[0,1+\varepsilon] \times[0,1] \subset G
$$

6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous positive function, and let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by

$$
F(x, y, z)=\left(\int_{0}^{x} f(t) d t, \int_{0}^{x+y} f(t) d t, \int_{0}^{x+y+z} f(t) d t\right)
$$

Prove that in a small neighborhood of an arbitrary point of \mathbb{R}^{3}, F is invertible and the inverse is continuously differentiable.
7. Let $U \subset \mathbb{R}^{2}$ be the region bounded by parabolas $y=x^{2}$ and $x=y^{2}$. Evaluate

$$
\int_{\partial U}\left(y+x^{2023}\right) d x+\left(2023 x-e^{2023 y^{2}}\right) d y
$$

assuming that ∂U is oriented counterclockwise.
8. Find the Fourier series for $p(x)=x^{2}$ on $[-\pi, \pi]$. Sketch a graph of the function defined on all of \mathbb{R} to which the Fourier series converges pointwise. Is the convergence uniform? Use the Fourier series to show that

$$
\frac{\pi^{2}}{12}=1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\ldots
$$

