REAL ANALYSIS PRELIMINARY EXAMINATION

AUGUST 2022
(1) Let $f(x)=x$.
(a) Find the Fourier series of $f(x)$ on $[-\pi, \pi]$.
(b) Graph the function $g: \mathbb{R} \rightarrow \mathbb{R}$ to which the Fourier series converges pointwise.
(c) Does the Fourier series converge to g uniformly?
(2) Let $f(x, y)=\sqrt{|x y|}$.
(a) Prove that f is continuous at $(x, y)=(0,0)$.
(b) Prove that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at $(x, y)=(0,0)$.
(c) Prove that f is not differentiable at $(x, y)=(0,0)$.
(3) For $\alpha \neq 0$, evaluate $\lim _{x \rightarrow 0}\left(\frac{\alpha^{2}}{\sin ^{2} \alpha x}-\frac{1}{\sin ^{2} x}\right)$.
(4) Find $\iint_{S} \vec{F} \cdot \vec{N} d S$, where $\vec{F}(x, y, z)=\left(x+2 y z,-y+z^{2}, 3 z^{3}-x y\right), S$ is the surface of the ellipsoid $\frac{x^{2}}{4}+\frac{y^{2}}{4}+\frac{z^{2}}{9}=1$, and \vec{N} is the outward unit normal to the surface.
(5) Let $\left(a_{n}\right)$ be a sequence of positive numbers such that $\sum_{n=1}^{\infty} a_{n}$ converges.
(a) Prove that the series $\sum_{n=1}^{\infty} \sqrt{a_{n} a_{n+1}}$ also converges.
(b) Give an example of a divergent series $\sum_{n=1}^{\infty} a_{n}$ such that the series $\sum_{n=1}^{\infty} \sqrt{a_{n} a_{n+1}}$ converges.
(6) (a) Prove that the set of the limit points of a sequence of real numbers is a closed set.
(b) Construct a sequence of real numbers so that the set of the limit points of the sequence is precisely the set of natural numbers \mathbb{N}.
(7) Suppose that f is a twice continuously differentiable function with positive second derivative on the closed interval $[0,2]$. Suppose in addition that $f(0)=1, f(1)=-1$, and $f(2)=2$. Prove that f has exactly two zeros on $(0,2)$.
(8) Suppose that functions f and g are Riemann integrable on the interval $[a, b]$ and that

$$
\int_{a}^{b} f(x) d x>\int_{a}^{b} g(x) d x
$$

Use the definition of Riemann integrability to prove that there exists $[c, d] \subset[a, b]$ with $c<d$ such that $f(x)>g(x)$ on $[c, d]$.

