REAL ANALYSIS PRELIMINARY EXAMINATION

AUGUST 2022

(1) Let f(x) = x.

- (a) Find the Fourier series of f(x) on $[-\pi, \pi]$.
- (b) Graph the function $g: \mathbb{R} \to \mathbb{R}$ to which the Fourier series converges pointwise.
- (c) Does the Fourier series converge to g uniformly?
- (2) Let $f(x, y) = \sqrt{|xy|}$.
 - (a) Prove that f is continuous at (x, y) = (0, 0).
 - (b) Prove that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at (x, y) = (0, 0).
 - (c) Prove that f is not differentiable at (x, y) = (0, 0).

(3) For
$$\alpha \neq 0$$
, evaluate $\lim_{x \to 0} \left(\frac{\alpha^2}{\sin^2 \alpha x} - \frac{1}{\sin^2 x} \right)$.

- (4) Find $\int \int_{S} \vec{F} \cdot \vec{N} dS$, where $\vec{F}(x, y, z) = (x + 2yz, -y + z^2, 3z^3 xy)$, S is the surface of the ellipsoid $\frac{x^2}{4} + \frac{y^2}{4} + \frac{z^2}{9} = 1$, and \vec{N} is the outward unit normal to the surface.
- (5) Let (a_n) be a sequence of positive numbers such that $\sum_{n=1}^{\infty} a_n$ converges.
 - (a) Prove that the series $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ also converges.
 - (b) Give an example of a divergent series $\sum_{n=1}^{\infty} a_n$ such that the series $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ converges.

AUGUST 2022

- (6) (a) Prove that the set of the limit points of a sequence of real numbers is a closed set.
 - (b) Construct a sequence of real numbers so that the set of the limit points of the sequence is precisely the set of natural numbers \mathbb{N} .
- (7) Suppose that f is a twice continuously differentiable function with positive second derivative on the closed interval [0, 2]. Suppose in addition that f(0) = 1, f(1) = -1, and f(2) = 2. Prove that f has exactly two zeros on (0, 2).
- (8) Suppose that functions f and g are Riemann integrable on the interval [a, b] and that $\int_{a}^{b} f(x)dx > \int_{a}^{b} g(x)dx.$

Use the definition of Riemann integrability to prove that there exists $[c, d] \subset [a, b]$ with c < d such that f(x) > g(x) on [c, d].