Real Analysis Preliminary Exam August 21, 2015 4 hours

- (1) Consider the sequence (a_k) defined inductively by $a_1 = \sqrt{6}$ and $a_{k+1} = \sqrt{6 + a_k}$. Prove that it converges, and find its limit.
- (2) State and prove the chain rule for differentiable functions of one variable.
- (3) Prove the following or give a counterexample: If $a_n \ge 0$ for all n and

$$\sum_{n=1}^{\infty} a_n \text{ converges, then } \sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n} \text{ converges as well.}$$

(4) Prove that a monotone bounded function on [a, b] is Riemann integrable on [a, b].

(5) Put
$$f(x,y) = \frac{x^3y}{x^4 + y^2}$$
 for all $(x,y) \neq (0,0)$, and $f(0,0) = 0$.

- (a) Prove that f is continuous at (0,0).
- (b) Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (0,0).
- (c) Is f(x, y) differentiable at (0, 0)?
- (6) Let $f : \mathbb{R} \to \mathbb{R}$ be the function of period 2π such that $f(x) = x^3$ for $-\pi \le x < \pi$.
 - (a) Prove that the Fourier series for f has the form $\sum_{n=1}^{\infty} b_n \sin nx$ (no cosine terms). Write, but do not evaluate, an integral formula for b_n in terms of n.
 - (b) Discuss the pointwise convergence of the Fourier series above on \mathbb{R} .
 - (c) Prove that

$$\sum_{n=1}^{\infty} b_n^2 = \frac{2\pi^6}{7}.$$

- (7) Describe, with proof, the possible values of $\oint \frac{x \, dy y \, dx}{x^2 + y^2}$, where *C* is a simple closed, smooth curve, traversed counterclockwise, that does not pass through (0,0).
- (8) Let A be a compact subset of \mathbb{R}^n , $x \in A$. Let (x_i) be a sequence of points in A such that every convergent subsequence of (x_i) converges to x.
 - (a) Prove that the sequence (x_i) itself converges to x.
 - (b) Give an example showing (a) can fail if A is not compact.