Consider a linearly ordered set X with the order topology.
 (a) Show X is Hausdorff.
 (b) If X is infinite and well-ordered, show there are infinitely many x ∈ X such that {x} is open.

(c) Give an example of X infinite and well-ordered where the topology is not discrete.

- 2. Let A' denote the set of limit points of a subset of a topological space. Let $A \subset X$ and $B \subset Y$. In $X \times Y$, prove that $(A \times B)' \supset A' \times B'$ and give an example that shows equality may not hold.
- 3. Prove that a metric space X is 2nd countable if and only if it is separable.
- 4. Let X and Y be topological spaces and f : X → Y a function.
 (a) Suppose f : X → Y be continuous. Let the sequence (x_n) converge to x. Prove (f(x_n)) converges to f(x).
 (b) Now assume X is 1st countable. Suppose whenever (x_n) converges to x, we also have (f(x_n)) converges to f(x).
- 5. Let *X* be a countable metric space. Show that *X* has a basis consisting of sets that are both open and closed.
- 6. Let *X* be a metric space with no isolated points and let *S* be a discrete subspace of *X*. Show that \overline{S} contains no open set.
- 7. Suppose that a compact metric space has at most countably many points. Find such a space with infinitely many isolated points and infinitely many non-isolated points.
- 8. Provide a proof or counterexample: The intersection of a decreasing sequence of compact, connected sets in a Hausdorff space is connected.
- 9. Suppose *A* and *B* are subsets of a space *X*, and that *A* ∪ *B* and *A* ∩ *B* are connected.
 (a) If *A* and *B* are closed, prove they are also connected.
 (b) Give an example where *A* and *B* are not connected.
- 10. Prove that a compact metric space has a countable dense subset.
- 11. A space is Lindelöf if every cover by open sets has a countable subcover. Prove that a closed subspace of a Lindelöf space is Lindelöf.
- 12. Let *X* be a metric space. Prove that:

(a) For any $A \subset X$, $d(x;A) = inf\{d(x;a) : a \in A\}$ defines a continuous function from X to R. (b) $\overline{A} = \{x \in X : d(x;A) = 0\}$.

- (c) X is a normal topological space.
- 13. Let A be a subspace of a regular space X. Show that X/A is Hausdorff if and only if A is closed.
- 14. For subsets A and B of a metric space with distance function d, define d(A, B) = inf{d(a, b) : a ∈ A, b ∈ B}.
 (a) If A and B are compact, prove there exist a ∈ A and b ∈ B such that d(A, B) = d(a, b).
 (b) Give a counterexample if "compact" is replaced by "closed."
- 15. Give an example of a subset of \mathbb{R}^n having uncountably many connected components. Can such a subset be open? Closed?
- 16. Show that $\{0, 1\}^{[2,3]}$ is separable but not second countable. (Note that $\{0, 1\}^{[2,3]} = \{$ functions $f : [2,3] \rightarrow \{0,1\} \}$, the Cartesian product of an uncountable number of copies of the two point Hausdorff space $\{0, 1\}$, indexed by the interval [2, 3].)
- 17. Let X = C([0, 1]) be the space of continuous, real-valued functions on [0, 1], with the topology generated by sets of the form

$$U(f,\varepsilon) = \{g \in C([0,1]) : \sup_{t \in I} | f(t) - g(t) | < \varepsilon\},\$$

for $f \in X$, $\varepsilon > 0$. Prove or disprove that

- a. X is Hausdorff.
- b. *X* is locally connected.
- c. X is locally compact.
- 18. For $\alpha \in \mathbb{R}$, let X_{α} be the quotient $\mathbb{R}^2 / \sim_{\alpha}$, where the equivalence relation is defined by

 $(x, y) \sim_{\alpha} (x, \alpha x + y)$

for all $x, y \in \mathbb{R}^2$. Find necessary and sufficient conditions that the quotient topology on X_{α} is Hausdorff.

- 19. Show that a compact metric space cannot be isometric to a proper subset of itself.
- 20. Let $E_1, E_2, ...$ be nonempty closed subsets of a complete metric space (X, d) with $E_{n+1} \subset E_n$ for all positive integers n, and such that $\lim_{n\to\infty} \operatorname{diam}(E_n) = 0$, where $\operatorname{diam}(E)$ is defined to be

$$sup\{d(x, y) \mid x, y \in E\}$$

Prove that $\bigcap_{n=1}^{\infty} E_n \neq \emptyset$.

- 21. A standard theorem states that a continuous real valued function on a compact set is bounded. Prove the converse: If K is a subset of \mathbb{R}^n and if every continuous real valued function on K is bounded, then K is compact.
- 22. Let *K* be a nonempty compact set in a metric space with distance function *d*. Suppose that $\varphi: K \to K$ satisfies

$d(\varphi(x),\varphi(y)) < d(x,y)$

for all $x \neq y$ in K. Show there exists precisely one point $x \in K$ such that $x = \varphi(x)$.

- 23. Prove that a continuous bijection from a compact space to a Hausdorff space is a homeomorphism.
- 24. (a) Prove that a continuous image of a compact space is compact.(b) Prove that a continuous image of a connected space is connected.
- 25. Prove that a compact Hausdorff space is both regular and normal.
- 26. Prove that a second-countable, compact topological space is necessarily sequentially compact (i.e. every sequence contains a convergent subsequence).
- 27. Let $X = \prod_{i=1}^{\infty} [0, 1]$ and let $Y = \{x \in X | \pi_i(x) = 0 \text{ except for finitely many } i\}$.
 - (a) Determine whether **Y** is compact when **X** is given the product topology.
 - (b) Determine whether *Y* is compact when *X* is given the box topology.
- 28. Let X be a Hausdorff space.
 (a) If S ⊂ X is a finite set, prove there is a collection {U_s/s ∈ U_s} of pairwise disjoint open sets in X for which s ∈ U_s.

(b) If *S* is infinite, prove the conclusion of part (a) may or may not be true.

- 29. Let $X \subset \mathbb{R}^2$ be the set of vertical lines with integer *x*-intercepts.
 - (a) Describe the construction of \hat{X} , the one-point compactification of X, and explain its topology. (b) Determine whether \hat{X} is homeomorphic to the Hawaiian earring, that is, the union of all

circles in \mathbb{R}^2 with centers (1/n; 0) and radius 1/n where n is a positive integer.

(c) Determine whether X is homeomorphic to the quotient space of R that has Z identified to a point.

- 30. Let *X* be a topological space. Which of the following four properties hold for a subspace *Y* whenever they hold for *X*: compactness, second countability, local connectedness, regularity? (Prove or describe a counterexample.)
- 31. Show that if *X* and *Y* are connected spaces then so is $X \times Y$.
- 32. State the Unique Path Lifting Lemma from covering space theory and give a brief outline of its proof.
- 33. (a) State the Seifert-van Kampen theorem.

(b) Use (a) to calculate the fundamental group of wedge of n circles (use induction).

- 34. Let X be homotopy equivalent to a singleton space.(a) Prove that X is path connected.
 - (b) Prove that *X* is simply connected.
- 35. Prove that if $f_0, f_1 : X \to Y$ are homotopic maps, and $g_0, g_1 : Y \to Z$ are homotopic maps, then $g_0 \circ f_0$ and $g_1 \circ f_1$ are homotopic maps. Prove that if X is a space and Y is a contractible space, then any two maps from X to Y are homotopic.

- 36. Prove the following weak version of the Seifert-van Kampen theorem: If $X = U \cup V$ where U, V are open, $U \cap V$ is path connected and x is in $U \cap V$ then $\pi_1(X; x)$ is generated by the images of $\pi_1(U; x)$ and $\pi_1(V; x)$ in $\pi_1(X; x)$.
- 37. Prove or disprove:
 - (a) If f: X → Y is continuous and injective, then f# : π₁(X; x) → π₁(Y; f(x)) is injective.
 (b) If f: X → Y is continuous and surjective, then f# : π₁(X; x) → π₁(Y; f(x)) is surjective.
 (c) If c : A ⊂ X is the inclusion and r : X → A is a retraction then c# is injective and r# is surjective.
- 38. Let $C(X; R) = \{f : X \to R : f \text{ is continuous}\}$. Let open balls under the sup norm be a basis for a topology on C(X; R). Prove that C(X; R) is contractible.
- 39. Prove the Zig-Zag lemma: let $0 \to C \to D \to E \to 0$ be a short exact sequence of chain complexes with the above maps being $f: C \to D, g: D \to E$. Show that there is a long exact sequence of homology groups that arises from this situation.
- 40. Consider the figure-eight X with base point x. Let $G = \langle a \rangle$ be the subgroup of $\pi_1(X, x)$ generated by the loop *a* which circles the right hand loop in X exactly once. Draw an explicit picture of the covering space \tilde{X} whose projection $p : (\tilde{X}, \tilde{x}) \to (X, x)$ takes $\pi_1(\tilde{X}, \tilde{x})$ isomorphically onto *G*.
- 41. For each of the following, either give an example or explain why none exists.
 - (a) A connected space X such that $\pi_1(X)$ is a non-trivial finite group.
 - (b) A space X such that $H_2(X)$ is a non-trivial finite group.
 - (c) A retraction of the 2-sphere to the circle on the equator.
 - (d) A continuous function from the 2-sphere to itself with no fixed points.
- 42. Compute the relative homology groups $H_n(S^3, A)$, for all $n \ge 0$, where A is a finite set of points in S^3 .
- 43. Prove that if $m \neq n$, \mathbb{R}^m is not homeomorphic to \mathbb{R}^n .
- 44. Construct a map from S^2 to S^2 of degree two.
- 45. Suppose that M and N are closed surfaces. If M#N denotes the connected sum of M and N, derive a formula for the Euler characteristic of M#N in terms of the Euler characteristics of M and N.
- 46. Find the fundamental group of
 - a. the torus.
 - b. the genus two surface.
 - c. real projective *n*-space \mathbb{RP}^n .
 - d. the Klein bottle.
 - e. the wedge $\mathbb{RP}^2 \vee \mathbb{RP}^2$.
- 47. Find the Euler characteristic of
 - a. the torus.
 - b. the genus two surface.
 - c. real projective *n*-space \mathbb{RP}^n .
 - d. the Klein bottle.
 - e. the wedge $\mathbb{RP}^2 \vee \mathbb{RP}^2$.
- 48. Construct a space whose fundamental group is the free product of Z_2 with Z.
- 49. Compute the homology groups (with integer coefficients) of
 - a. The wedge $S^1 \vee S^2$ of a circle and a 2-sphere.
 - b. $S^1 \times S^2$.
 - c. The Klein bottle.
 - d. The four-sphere with an embedded torus collapsed to a point.
- 50. Let X be 2-dimensional complex defined as an equilateral triangle with edges oriented clockwise and which are all identified.
 - a. Find $H_*(X, \mathbb{Z})$.
 - b. Find $H_*(X, Z_3)$.

c. Prove or disprove that X is a surface.