SAMPLE QUESTIONS FOR PRELIMINARY COMPLEX ANALYSIS EXAM

VERSION 4.0

Contents

1.	Complex numbers and functions	1
2.	Definition of holomorphic function	1
3.	Complex Integrals and the Cauchy Integral Formula	2
4.	Sequences and series, Taylor series, and series of analytic functions	2
5.	Identity Theorem	4
6.	Schwarz Lemma and Cauchy Inequalities	4
7.	Liouville's Theorem	E.
8.	Laurent series and singularities	E.
9.	Residue Theorem	Ę
10.	Contour Integrals	6
11.	Argument Principle	7
12.	Rouché's Theorem	8
13.	Conformal maps	8
14.	Analytic Continuation	Ģ
15.	Suggested Practice Exams	11

1. Complex numbers and functions

- (1.1) Write all values of i^i in the form a + bi.
- (1.2) Prove that $\sin z = z^2$ has infinitely many complex solutions.
- (1.3) Find log $(\sqrt{3} + i)$, using the principal branch.
- (1.4) Prove or disprove that there exists a complex number z such that $|z| > \pi^2$ and such that $\frac{\cos(z)}{z} = \frac{1}{2\pi}$.

2. Definition of holomorphic function

(2.1) Find all $v : \mathbb{R}^2 \to \mathbb{R}^2$ such that for z = x + iy,

$$f(z) = (x^3 - 3xy^2) + iv(x, y)$$

is analytic.

- (2.2) Prove that if $g: \mathbb{C} \to \mathbb{C}$ is a C^1 function, the following two definitions of "holomorphic" are the same:
 - (a) $\frac{\partial g}{\partial \overline{z}} = 0$
 - (b) the derivative transformation $g'(z_0) : \mathbb{R}^2 \to \mathbb{R}^2$ is \mathbb{C} -linear, for all $z_0 \in \mathbb{C}$. That is, $g'(z_0)m_w = m_w g'(z_0)$ for all $w \in \mathbb{C}$, where m_w is the linear transformation given by complex multiplication by w.

VERSION 4.0

- (2.3) True or false: If h is an entire function such that $\frac{\partial h}{\partial z} \neq 0$ everywhere, then h is injective.
- (2.4) Find all possible $a, b \in \mathbb{R}$ such that $f(x, y) = x^2 + iaxy + by^2$, $x, y \in \mathbb{R}$ is holomorphic as a function of z = x + iy.
- (2.5) Prove that the real and imaginary parts of a holomorphic function f(x + iy) are harmonic functions of (x, y).
- (2.6) Suppose that v(x, y) is harmonic on \mathbb{R}^2 . Find all functions u(x, y) defined on \mathbb{R}^2 such that the complex-valued function f defined by f(x 2iy) = u(x, y) + iv(x, y) is holomorphic.
- (2.7) Find the maximum value of $|z^4 + ze^z|$ on the closed unit disk.
- (2.8) Prove that if R(x, y) and A(x, y) are real-valued functions of $(x, y) \in \mathbb{R}^2$, and if

$$f(x+iy) = R(x,y) e^{iA(x,y)},$$

is holomorphic, then

$$\frac{\partial R}{\partial x} = R \frac{\partial A}{\partial y}$$

3. Complex Integrals and the Cauchy Integral Formula

(3.1) Let n be a positive integer and $0 < \theta < \pi$. Prove that

$$\frac{1}{2\pi i} \int_{|z|=2} \frac{z^n}{1 - 2z\cos\theta + z^2} \, dz = \frac{\sin n\theta}{\sin\theta},$$

where the circle |z| = 2 is oriented counterclockwise.

- (3.2) Prove or disprove that
 - (a) $\log |z|$ is absolutely integrable on Δ (the unit disk).
 - (b) z^{-2} is absolutely integrable on Δ .
- (3.3) Use the Cauchy Integral Formula to prove the Cauchy Integral Formula for Derivatives.
- (3.4) Use the Cauchy Integral Formula to prove the Cauchy Inequalities.
- (3.5) Use the Cauchy Integral Formula to prove Liouville's Theorem.
- 4. SEQUENCES AND SERIES, TAYLOR SERIES, AND SERIES OF ANALYTIC FUNCTIONS
- (4.1) Let f be an analytic function in the connected open subset G of the complex plane. Assume that for each point z in G, there is a positive integer n such that the n^{th} derivative of f vanishes at z. Prove that f is a polynomial.
- (4.2) Find the radius of convergence of the Taylor series of $(3-z^2)^{-1}$ at z=1+i.
- (4.3) Prove that

$$\sum_{k \in \mathbb{Z}} \frac{1}{\left(z - k\right)^2}$$

is a well-defined meromorphic function on \mathbb{C} .

(4.4) Consider the series

$$F(x) = \sum_{n \in \mathbb{Z}} \frac{1}{(x+n)^4 + 1}.$$

- (a) Does the series converge at each $x \in \mathbb{R}$?
- (b) Does the series converge at each $x \in \mathbb{C}$?

- (c) Does the series converge uniformly in x?
- (d) Is the limiting function F(x) continuous in x?
- (4.5) Find the sixth degree Taylor polynomial of $e^{\sin(z)}$ at the origin.
- (4.6) Find all $w \in \mathbb{C}$ such that

$$g(w) = \sum_{j=1}^{\infty} \frac{w + w^{-j}}{(j+1)^j}$$

converges. Is q analytic on this set of w? (4.7) Let

$$S(z) = \sum_{k=1}^{\infty} \frac{z \sin(kz)}{k^2}.$$

Find the set of all z for which S(z) converges. Is the convergence uniform on this set? Is S analytic on this set?

(4.8) In each case, find the largest open set of $z \in \mathbb{C}$ on which the sum converges, and determine if the sum converges to an analytic function.

(a)
$$\sum_{n=1}^{\infty} \frac{z^n}{\sqrt{n(n+1)(z+2)}}$$

(b) $\sum_{n=1}^{\infty} \frac{1}{n^2 + z^4}$

(4.9) Consider the sum $\sum_{n=1}^{\infty} z^n (1-z)^2$.

- (a) Does the sum converge uniformly for $|z| \leq \frac{1}{2}$?
- (b) Does the sum converge uniformly for |z| < 1?

(4.10) Find the radius of convergence of the following power series:

(a)
$$\sum_{n=1}^{\infty} \left(\frac{z}{k+1}\right)^k$$

(b) $\sum_{k=1}^{\infty} \left(1 + \frac{1}{2k}\right)^k z^k$

- (4.11) Let $S(z) = \sum_{m=1}^{\infty} \frac{m}{e^{mz}}$. (a) Find the set of all z such that S(z) converges absolutely.
 - (b) Does S converge uniformly on this set?
 - (c) Is S analytic on this set?
 - (d) Can S be analytically continued to a larger set?
- (4.12) From basic principles, prove that if for all $z \in \mathbb{C}$, f(1+z) = f(1-z) for some analytic function f, then the odd coefficients of the Taylor series of f centered at 1 are zero.
- (4.13) Find a closed-form formula for

$$\sum_{k=0}^{\infty} a^k \sin\left(k\theta\right),\,$$

where $1 > a > 0, \theta \in \mathbb{R}$.

VERSION 4.0

5. Identity Theorem

- (5.1) Do there exist functions f(z) and g(z) that are analytic at z = 0 and that satisfy (a) $f(1/n) = f(-1/n) = 1/n^2, n = 1, 2, ...,$ (b) $q(1/n) = q(-1/n) = 1/n^3, n = 1, 2, ...?$
- (5.2) Let E be a connected open set in the complex plane and let f(z) be holomorphic on E. Prove that f(z) is constant if any one of the following conditions hold:
 - (a) f(z) is real-valued on E,
 - (b) $\operatorname{Re}(f(z))$ is constant on E,
 - (c) |f(z)| = 1 on *E*.
- (5.3) Prove the identity theorem for holomorphic functions. That is, prove that if f and g are holomorphic functions both defined on a connected open set $U \subseteq \mathbb{C}$, and if $\{z \in U : f(z) = g(z)\}$ has a limit point in U, then f(z) = g(z) for all $z \in U$.
- (5.4) Do there exist functions f, g, h that are holomorphic on the open unit disk that satisfy:

(a)
$$f\left(\frac{1}{2n}\right) = f\left(\frac{1}{2n+1}\right) = \frac{1}{2n}$$
 for $n \in \mathbb{Z}_{>0}$?

- (b) $g\left(\frac{1}{n}\right) = \frac{1}{1-\frac{2}{n}}$ for $n \in \mathbb{Z}, n \ge 3$? (c) $h\left(\frac{1}{n}\right) = \frac{1}{1-\frac{1}{n}}$ for $n \in \mathbb{Z}, n \ge 2$?
- (5.5) Prove the following version of the identity theorem for holomorphic functions. Let fand q be holomorphic functions defined on a connected open set $U \subseteq \mathbb{C}$. If L is a line such that $L \cap U$ is nonempty, and if f(z) = g(z) for $z \in L \cap U$, then f(z) = g(z)for all $z \in U$.
- (5.6) Let f be an analytic function in the connected open subset G of the complex plane. Assume that for each point z in G, there is a positive integer n such that the n^{th} derivative of f vanishes at z. Prove that f is a polynomial.
- (5.7) Suppose that a holomorphic function F is defined on a neighborhood that contains the closed unit disk \overline{D} . Find and example of such a function F with the property that $F(z) = -i\overline{F(z)}$ for all z on $\partial \overline{D}$, or show that no such function exists.

6. Schwarz Lemma and Cauchy Inequalities

- (6.1) Suppose a and b are positive.
 - (a) Prove that the only entire functions f for which $|f(z)| \leq a|z|^{1/2} + b$ for all z are constant.
 - (b) What can you prove if $|f(z)| \le a|z|^{5/2} + b$ for all z?
- (6.2) Let f be an analytic function in the open unit disc of the complex plane such that $|f(z)| \leq C/(1-|z|)$ for all z in the disc, where C is a positive constant. Prove that $|f'(z)| \le 4C/(1-|z|)^2.$
- (6.3) Let the function f be analytic in the entire complex plane, and suppose that $f(z)/z \rightarrow z$ 0 as $|z| \to \infty$. Prove that f is constant.
- (6.4) Find all entire functions f in the plane satisfying f(0) = 1 and $|f(z)| \le 2|z|^{3/2} 1$ for |z| > 2.
- (6.5) If f(z) is an entire function that is not a polynomial, prove that, given given arbitrary C > 0, R > 0, and integer m > 0, there exists a z in |z| > R such that $|f(z)| > C|z|^m$.
- (6.6) Let f(z) be an analytic function that maps the open disc |z| < 1 into itself. Show that $|f'(z)| \le 1/(1-|z|^2)$.

(6.7) Prove or disprove that there exists a holomorphic function on the punctured unit disk Δ^* such that

$$\lim_{z \to 0} zf(z) = 0, \ \lim_{z \to 0} |f(z)| = \infty.$$

(6.8) Let *h* be an analytic function on a neighborhood of the open unit disk such that $|h(z)| \leq 2$ for all *z* such that |z| = 1. Suppose that $|h(\frac{1}{3})| = 0$. Find all possible values of $|h(\frac{1}{2})|$, for any choice of *h* with the mentioned properties.

7. LIOUVILLE'S THEOREM

- (7.1) Suppose that f(z) and g(z) are entire functions such that $|f(z)| \le |g(z)|$ for all z. Show that f(z) = cg(z) for some constant $c \in \mathbb{C}$.
- (7.2) True or False:
 (a) If g is an entire function that is bounded on R, then g is a constant function.
 - (b) If h is an entire function such that $h(z) \to \infty$ as $z \to \infty$, then h is a polynomial.
- (7.3) Prove the fundamental theorem of algebra using Liouville's Theorem.
- (7.4) Let h be an entire function such that $\operatorname{Re}(h(z)) > -1$ for all $z \in \mathbb{C}$. Prove that h is a constant function.

8. LAURENT SERIES AND SINGULARITIES

- (8.1) Find the Laurent expansions of $1/(z^2+4)^2$ at *i* and at 2*i*.
- (8.2) Find the first three non-zero terms of the Laurent expansion of $(e^z 1)^{-1}$ at z = 0. Find the largest number R such that the Laurent series converges in 0 < |z| < R.
- (8.3) Compute the Laurent series of $\frac{z-1}{z(z-2)}$ (centered at the origin).
- (8.4) Compute the Laurent series of $\frac{e^z}{z^2}$ (centered at the origin).
- (8.5) Identify the type of singularity at z = 0:

(a)
$$\frac{\sin(z)}{z}$$

(b) $z^2 e^{1/z}$

- (8.6) Prove this part of the Riemann removable singularity theorem: Let D be a domain in \mathbb{C} , and let $z_0 \in D$. Suppose that g is a holomorphic function on $D \setminus \{z_0\}$ with an isolated singularity at z_0 . Prove that if g is bounded on $D \setminus \{z_0\}$, then there exists a holomorphic function h on D such that h(z) = g(z) for $z \in D \setminus \{z_0\}$.
- (8.7) Let $L(w) = \sum_{m \in \mathbb{Z}} a_m w^m$ be a Laurent series. Let Δ^* denote the punctured open unit disk. Find necessary and sufficient conditions on the constants a_m such that Lis analytic on Δ^* .
- (8.8) Prove this part of the Riemann removable singularity theorem: Let D be a domain in \mathbb{C} , and let $z_0 \in D$. Suppose that g is a holomorphic function on $D \setminus \{z_0\}$ with an isolated singularity at z_0 . Prove that if $\lim_{z\to z_0} (z-z_0) g(z) = 0$, then there exists a holomorphic function h on D such that h(z) = g(z) for $z \in D \setminus \{z_0\}$.

9. Residue Theorem

(9.1) Let C be the positively oriented contour consisting of the vertical diameter and right half of the circle |z - 1| = 3. An entire function f(z) is known to have no zeros on C

and satisfies the two conditions

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} z \, dz = 3,$$

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} z^2 \, dz = \frac{5}{2}.$$

Determine the zeros of f(z) inside C.

- (9.2) Let D be a domain which contains in its interior the closed unit disk $|z| \leq 1$. Let f(z) be analytic in D except at a finite number of points z_1, \ldots, z_k on the unit circle |z| = 1 where f(z) has first order poles with residues s_1, \ldots, s_k . Let the Taylor series of f(z) at the origin be $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Prove that there exists a positive constant M such that $|a_n| \leq M$.
- (9.3) Compute

$$\int_{\partial\Delta} \frac{1+z^2+z^4}{\left(z-\frac{1}{2}\right)^6} \, dz,$$

where Δ is the open unit disk and $\partial \Delta$ is the unit circle, oriented counterclockwise. (9.4) Evaluate

$$\int_{\partial\Delta} \frac{\cos\left(e^{-z}\right)}{z^2} \, dz,$$

where $\partial \Delta$ is the boundary of the unit disk, oriented counterclockwise.

(9.5) Find

$$\int_{\partial\Delta} \frac{dz}{\left(2z-1\right)\left(z+3\right)^2}$$

where $\partial \Delta$ is the boundary of the unit disk, oriented counterclockwise. (9.6) Find

$$\int_{\alpha} \left(1 + z^2 \right) \tan\left(z \right) \, dz,$$

where α is the path parametrized as

$$\alpha(t) = (2\sin(t), 2\cos(t)), \ -\pi \le t \le 7\pi.$$

10. Contour Integrals

- (10.1) Evaluate $\int_{0}^{\infty} \frac{\log 3x}{x^{2}+1} dx.$ (10.2) Evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{x^{4}+1} dx.$
- (10.3) Show that $\int_{\gamma} e^{iz} e^{-z^2} dz$ has the same value on every straight line path γ parallel to the real axis.
- (10.4) Compute

$$\int_0^\infty \frac{1}{1+x^4} dx.$$

(10.5) Compute

(10.6) For any c > 0, find

$$\int_0^\infty \frac{\sqrt{x}}{\left(x^2 + c^2\right)^2} dx$$

(10.7) Find

$$\int_0^\infty \frac{(\log(x))^2}{4x^2 + 1} dx.$$

11. Argument Principle

(11.1) (a) Show that there is a complex analytic function defined on the set $U = \{z \in \mathbb{C} \mid |z| > 4\}$ whose derivative is

$$\frac{z}{(z-1)(z-2)(z-3)}$$

(b) Is there a complex analytic function on U whose derivative is

$$\frac{z^2}{(z-1)(z-2)(z-3)}?$$

- (11.2) Let f(z) be analytic in the annulus $\Omega = \{1 < |z| < 2\}$. Assume that f has no zeros in Ω . Show that there exists an integer n and an analytic function g in Ω such that, for all $z \in \Omega$, $f(z) = z^n e^{g(z)}$.
- (11.3) Rouché's Theorem and generalizations.
 - (a) Prove Rouché's Theorem. That is, let C be a simple closed contour in the complex plane, and let D be the interior of C. If f and g are two functions that are holomorphic on a neighborhood of the closure of D and if |g(z)| < |f(z)| for $z \in C$, then f and f + g have the same number of zeros in D, counted with multiplicities.
 - (b) Prove or disprove that if < is replaced by ≤ in the hypothesis, then the conclusion is still valid.
 - (c) Prove or disprove the following variant of the theorem. Suppose that f and g are holomorphic on unit disk. Suppose that there exists $R \in (0, 1)$ such that if R < r < 1, then |g(z)| < |f(z)| for all z on the circle of radius r centered at 0. Then f and f + g have the same number of zeros in the unit disk.
- (11.4) The stronger symmetric version of Rouché's Theorem.
 - (a) Prove the stronger symmetric version of Rouché's Theorem. That is, let C be a simple closed contour in the complex plane, and let D be the interior of C. If f and g are two functions that are holomorphic on a neighborhood of the closure of D and if |f(z) g(z)| < |f(z)| + |g(z)| for $z \in C$, then f and g have the same number of zeros in D, counted with multiplicities.
 - (b) Prove that the standard Rouché's Theorem is a corollary of the symmetric version given above (see previous problem).
 - (c) Prove or disprove that if < is replaced by \leq in the hypothesis, then the conclusion is still valid.
 - (d) Prove or disprove that if |f(z)-g(z)| is replaced by |f(z)+g(z)| in the hypothesis, then the conclusion is still valid.

VERSION 4.0

12. Rouché's Theorem

(12.1) How many zeros does the complex polynomial

$$3z^9 + 8z^6 + z^5 + 2z^3 + 1$$

have in the disk 1 < |z| < 2?

- (12.2) Let f be a holomorphic map of the unit disc $\mathbb{D} = \{z \mid |z| < 1\}$ into itself, which is not the identity map f(z) = z. Show that f can have, at most, one fixed point.
- (12.3) Prove that there does not exist a polynomial of the form $p(z) = z^n + a_{n-1}z^{n-1} + \dots + a_0$ such that |p(z)| < 1 for all z such that |z| = 1.
- (12.4) Let f be a holomorphic function whose domain includes the closed unit disk. Suppose that f maps the boundary of the unit disk into the open disk of radius R centered at the origin. Show that f maps the closed unit disk into the open disk of radius R centered at the origin.
- (12.5) Let A be a simply-connected open set in \mathbb{C} , and let α be a closed, Jordan, rectifiable curve in A with interior $I(\alpha)$. Suppose that f is a holomorphic function on A such that the restriction $f|_{\alpha}$ is one-to-one. Prove that f has at most one zero in $I(\alpha)$.
- (12.6) Prove the fundamental theorem of algebra by using Rouché's Theorem.

13. Conformal maps

(13.1) Describe the region in the complex plane where the infinite series

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(\frac{nz}{z-2}\right)$$

converges. Draw a sketch of the region.

- (13.2) Let \mathcal{D} be the domain exterior to the unit circle and with a slit along the negative real axis from $-\infty$ to -1. Find a biholomorphic mapping from \mathcal{D} to the upper half-plane so that ∞ is a fixed point and z = 4 maps to *i*. Prove the mapping is unique.
- (13.3) Find a conformal mapping of the exterior of the semi-circle |z| = 1 with Im(z) < 0 onto the interior of the unit circle |w| < 1.
- (13.4) Determine the largest disk about the origin whose image under the mapping $z \mapsto z^2 + z$ is one-to-one.
- (13.5) Find a conformal map from the set $\left\{z = (x, y) : x > 0, x^2 + \left(y \frac{1}{2}\right)^2 < \frac{1}{4}\right\}$ to the open unit disk.
- (13.6) Suppose the f is an entire holomorphic function such that f maps the real axis to itself and the imaginary axis to itself. Prove that f is an odd function.
- (13.7) Find the set of all possible orientation-preserving conformal maps from $\{z \in \mathbb{C} : 0 < \Im(z) < \pi\}$ to $\{z \in \mathbb{C} : \Im(z) > 0\}$, and prove that no other maps are possible.
- (13.8) Prove or disprove the existence of a holomorphic map that maps
 - (a) the set $P = \{z : \Im(z) > \Re(z)^2\}$ onto the entire complex plane \mathbb{C} .
 - (b) \mathbb{C} onto P.
 - (c) $P \setminus \{i\}$ onto $\mathbb{C} \setminus \{0\}$.
 - (d) $\mathbb{C} \setminus \{0\}$ onto $P \setminus \{i\}$.
- (13.9) Let F be a holomorphic function that maps the unit disk D into \overline{D} . Suppose that $F(\frac{1}{2}) = 0$.
 - (a) Give one example of such a map F that is invertible.

- (b) Give the inverse of the map found in (a).
- (c) Find the greatest possible value of $|F(-\frac{1}{2})|$ among all such maps.
- (13.10) Let F be a holomorphic function whose domain contains a point z_0 where $F'(z_0) \neq 0$. Let $C_{\varepsilon}(z_0)$ denote the circle of radius ε centered at z_0 , oriented counterclockwise.
 - (a) Prove that there exists $\varepsilon > 0$ such that

$$\int_{C_{\varepsilon}(z_0)} \frac{1}{F(z) - F(z_0)} dz = \frac{2\pi i}{F'(z_0)}$$

- (b) Prove or disprove that the equation above is true for any $\varepsilon > 0$.
- (13.11) Let $\Delta_{\delta}(z_0)$ denote the disk of radius $\delta > 0$ centered at $z_0 \in \mathbb{C}$, and let $\Delta_{\delta}^*(z_0) = \Delta_{\delta}(z_0) \setminus \{z_0\}$. Suppose that p(z) and q(z) are polynomials such that at some $z_0 \neq 0$, $p(z_0) \neq 0$ and $q(z_0) = 0$.
 - (a) Prove that if z_0 is a zero of multiplicity one for q, then there exists $\delta > 0$ such that $\frac{p(z)}{q(z)}$ is a conformal map restricted to $\Delta^*_{\delta}(z_0)$.
 - (b) Prove that if z_0 is a zero of multiplicity k > 1 for q, then for all $\delta > 0$, the restriction of $\frac{p(z)}{q(z)}$ to $\Delta^*_{\delta}(z_0)$ is not a conformal map.
- (13.12) Find the image of the set $\{z: 3 < |z| < 4\}$ under the map $f(z) = \log(z)$, where the branch $-\frac{\pi}{2} < \theta(z) \le \frac{3\pi}{2}$ is chosen.

14. Analytic Continuation

(14.1) Let

$$f(z) = \int_{-1}^{1} \frac{e^{-x^2}}{x-z} \, dx.$$

- (a) Show that f(z) is analytic in $\mathbb{C} [-1, 1]$.
- (b) Show that f(z) may be continued analytically across the open segment (-1, 1).

(c) Show that the analytic continuations of f from above (-1, 1) and from below (-1, 1) are different. What is their difference on the cut (-1, 1)?

(14.2) Find the largest open set on which the each series converges to an analytic function. Prove or disprove that the functions can be analytically continued to be defined on a larger open set, and describe that set if possible.

(a)
$$a(z) = \sum_{\substack{n=10 \\ \infty}}^{\infty} nz^{2n}$$
.
(b) $b(z) = \sum_{\substack{n=10 \\ n=10}}^{\infty} (-1)^n z^{n^2}$.
(c) $c(z) = \sum_{\substack{n=10 \\ n=10}}^{\infty} \frac{(-1)^n}{n} z^n$.
(d) $d(z) = \sum_{\substack{n=10 \\ n=10}}^{\infty} z^{n!}$.
(e) $e(z) = \sum_{\substack{n=10 \\ n=10}}^{\infty} z^{7^{n-2}}$.
(f) $f(z) = \sum_{\substack{n=10 \\ n=10}}^{\infty} z^{g(n)}$, where $g(n) = 2n$ or $g(n) = 2n + 1$, depending on n .

(14.3) Let

$$F(z) = \int_{-\infty}^{\infty} \frac{e^{zx}}{1 + e^x} \, dx.$$

- (a) Determine the set of z for which the integral converges.
- (b) Show that F can be analytically continued, and find the largest possible domain of its analytic continuation.

(14.4) Let

$$G(z) = \int_0^\infty e^{(1+2z)x} \, dx.$$

- (a) Determine the set of z for which the integral converges.
- (b) Show that F can be analytically continued, and find the largest possible domain of its analytic continuation.

10

15. Suggested Practice Exams

- (A) Do the following problems: (2.5),(4.10b),(6.4),(9.2),(10.2),(12.5),(13.5),(14.2cd)
- (B) Do the following problems: (4.5),(5.2),(6.6),(8.3),(9.1),(11.3),(13.7),(14.3)
 (C) Do the following problems:
 - (4.7), (5.4), (7.3), (8.1), (10.4), (11.1), (12.6), (14.1)