SAMPLE QUESTIONS FOR PRELIMINARY ALGEBRA EXAM

Contents

1.	Linear Algebra	1
2.	Groups and Subgroups, Permutations	3
3.	Homomorphisms, Factor Groups	3
4.	Classification of Abelian Groups	3
5.	Advanced group theory, Sylow theorems	3
6.	Rings and Ideals	4
7.	Fields and Galois Theory	4

1. LINEAR ALGEBRA

- (1.1) State and prove the Spectral Theorem on the diagonalization of real symmetric matrices.
- (1.2) Prove the following are equivalent for an $n \times n$ real matrix A.
 - (a) The columns of A form an orthonormal basis for \mathbb{R}^n .
 - (b) The rows of A form an orthonormal basis for \mathbb{R}^n .
 - (c) For every $x \in \mathbb{R}^n$, ||Ax|| = ||x||.
 - (d) For every $x, y \in \mathbb{R}^n$, $Ax \cdot Ay = x \cdot y$.
- (1.3) Let A and B be diagonalizable matrices such that AB = BA. Prove there is a matrix P such that $P^{-1}AP$ and $P^{-1}BP$ are both diagonal matrices.
- (1.4) Let \mathbb{F} be a field. For m and n positive integers, let $M_{m \times n}$ be the vector space of $m \times n$ matrices over \mathbb{F} . Fix m and n, and fix matrices A and B in $M_{m \times n}$. Define the linear transformation T from $M_{n \times m}$ to $M_{m \times n}$ by

$$T(X) = AXB.$$

Prove that if $m \neq n$, then T is not invertible.

- (1.5) Prove or disprove each of the following for square matrices A and B over \mathbb{C} :
 - (a) A + B is nonsingular if A and B are nonsingular.

(b) A + B is nonsingular if A and B are real symmetric matrices and all of their eigenvalues are strictly positive.

(c) A + B is nonsingular if all of the eigenvalues of $A + A^*$ and $B + B^*$ are strictly positive. (A^* denotes the conjugate transpose of A.)

- (1.6) Suppose that the $r \times r$ upper left minor M of A is nonsingular but that every other minor containing M is singular. Prove that rank(A) = r.
- (1.7) Let V and W be finite dimensional vector spaces, let X be a subspace of W, and let $T: V \to W$ be a linear map. Prove that the dimension of $T^{-1}(X)$ is at least dim $V \dim W + \dim X$.

(1.8) Prove that there exists a real symmetric matrix A such that

$$A^{2} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}.$$

- (1.9) Construct a 3×3 matrix with eigenvalue 1 and mapping $[0, 1, 2]^T$ and $[1, 1, 1]^T$ to $[1, 2, 3]^T$ and $[4, 5, 6]^T$, respectively.
- (1.10) Prove or give a counterexample to each of the following. Unless otherwise noted, A is an $n \times n$ complex matrix.
 - (a) If λ is an eigenvalue of A and $\mu \in \mathbb{C}$, then $\lambda \mu$ is an eigenvalue of $A \mu I$.
 - (b) If A is real and λ is an eigenvalue of A, then so is $-\lambda$.
 - (c) If A is real and λ is an eigenvalue of A, then so is $\overline{\lambda}$.
 - (d) If λ is an eigenvalue of A and A is nonsingular, then λ^{-1} is an eigenvalue of A^{-1} .
 - (e) If all the eigenvalues of A are zero, then A = 0.
 - (f) If A is diagonalizable and all its eigenvalues are equal, then A is diagonal.
- (1.11) Suppose the matrix A satisfies $A^2 = A$. Prove A is diagonalizable.
- (1.12) Prove that if A is a real symmetric $n \times n$ matrix, then

$$\inf_{v \in \mathbb{R}^n \setminus \{0\}} \frac{\langle Av, v \rangle}{\langle v, v \rangle}$$

is necessarily an eigenvalue of A. Is the statement true, if A is not required to be symmetric?

- (1.13) Find necessary and sufficient conditions that $\{(a, b), (c, d)\}$ is a basis of \mathbb{R}^2 .
- (1.14) For which m is the vector (1, 2, m, 5) a linear combination of (0, 1, 1, 1), (0, 0, 0, 1), and (1, 1, 2, 0)?
- (1.15) Find the set of all 6×6 matrices M such that there exists another matrix N such that $N^{-1}MN$ is a multiple of the identity matrix.
- (1.16) Suppose that a 7×7 complex matrix M satisfies $(M I)(M^* 2I) = 0$. Prove that $M^* = M$, and find all possible sets of eigenvalues of M.
- (1.17) Suppose that $\|\bullet\|_1$ and $\|\bullet\|_2$ are norms on a vector space V. Prove or disprove that (a) $\|v\|_3 = 5 \|v\|_1 \|v\|_2$ for $v \in V$ defines a norm on V.
 - (b) $||v||_4 = 5 ||v||_1 + ||v||_2$ for $v \in V$ defines a norm on V.
- (1.18) Let $P_2 = P_2(\mathbb{R})$ denote the real vector space of real polynomials of degree at most 2.
 - (a) Prove that $\langle p,q\rangle = \int_{-1}^{1} p(x) q(x) dx$ is an inner product on P_2 .
 - (b) Show that there is a unique $q \in P_2$ such that

$$\int_{-1}^{1} p(x) \, \cos(\pi x) \, dx = \langle p, q \rangle$$

for all p and find it.

(1.19) Let \mathbf{u} and \mathbf{v} be eigenvectors corresponding to different eigenvalues of the real symmetric matrix A. Prove that \mathbf{u} and \mathbf{v} are orthogonal.

(1.20) Define an inner product on the space of real polynomials by

$$\langle f,g\rangle = \int_0^\infty f(x)g(x)e^{-x} dx$$

- (a) Find an orthonormal basis for the subspace spanned by 1, x, and x^2 .
- (b) Calculate the projection of x^3 onto this subspace.

2. Groups and Subgroups, Permutations

- (2.1) Let H be a nonempty subset of a multiplicative group G such that H is closed under the group operation. Suppose in addition that if $x, y \in H$, then $xy^{-1} \in H$. Prove or disprove that H is necessarily a subgroup of G.
- (2.2) Prove that any group of order 6 is isomorphic to either \mathbb{Z}_6 or S_3 (the group of permutations of three objects).
- (2.3) Suppose that the group G is generated by elements x and y that satisfy $x^5y^3 = x^8y^5 = 1$. Is G the trivial group?
- (2.4) Prove that every finite group is isomorphic to
 - 1. A group of permutations;
 - 2. A group of even permutations.
- (2.5) Let $\mathbb{F}_2 = \{0, 1\}$ be the field with two elements. Let G be the group of invertible 2×2 matrices with entries in \mathbb{F}_2 . Show that G is isomorphic to S_3 , the group of permutations of three objects.

3. Homomorphisms, Factor Groups

- (3.1) Let p be the smallest prime factor of a nontrivial finite group. Prove that any subgroup of index p is normal.
- (3.2) Show that there are at least two nonisomorphic nonabelian groups of order 24.
- (3.3) Let G be a group and N be a proper normal subgroup of G. Suppose that there does not exist a subgroup H of G satisfying $N \subsetneqq H \subsetneqq G$. Prove that the index of N in G is finite and equal to a prime number.

4. CLASSIFICATION OF ABELIAN GROUPS

- (4.1) Let G be an abelian group. Suppose G has subgroups of orders m and n. Show G has a subgroup of order the least common multiple of m and n.
- (4.2) Let A, B, and C be finite abelian groups. Prove that if $A \times B$ is isomorphic to $A \times C$, then B is isomorphic to C.

5. Advanced group theory, Sylow theorems

- (5.1) Prove that every finite group of prime power order has a nontrivial center.
- (5.2) Let G be a group of permutations of $\{1, 2, ..., n\}$. We say G is *transitive* if for every i, j, there exists $\sigma \in G$ such that $\sigma(i) = j$. Prove the order of a transitive group G is divisible by n.
- (5.3) Let G and H be finite groups of relatively prime order. Show that $\operatorname{Aut}(G \times H)$, the group of automorphisms of $G \times H$, is isomorphic to the direct product of $\operatorname{Aut}(G)$ and $\operatorname{Aut}(H)$.
- (5.4) Suppose that G is a group such that every subgroup H of G is normal. Does this imply that G is abelian?

(5.5) Prove that every group of order 99 contains a nontrivial, proper, normal subgroup.

6. Rings and Ideals

- (6.1) Let R be a ring with 1, and let I be the left ideal of R generated by $\{ab-ba \mid a, b \in R\}$. Prove that I is a two-sided ideal.
- (6.2) Let R be a ring with identity, and let u be an element of R with a right inverse. Prove that the following conditions on u are equivalent:
 - 1. u has more than one right inverse;
 - 2. u is a left zero divisor;
 - 3. u is not a unit.
- (6.3) Suppose that R is a subring of a commutative ring S and that R is of finite index n in S. Let m be an integer that is relatively prime to n. Prove that the natural map $R/mR \rightarrow S/mS$ is a ring isomorphism.
- (6.4) Let R be a ring with 1. Suppose that A_1, A_2, \ldots, A_n are left ideals in R such that $R = A_1 \oplus A_2 \oplus \cdots \oplus A_n$ (as additive groups). Prove that there are elements $u_i \in A_i$ such that for any elements $a_i \in A_i$, $a_i u_i = a_i$ and $a_i u_j = 0$ if $j \neq i$.
- (6.5) Let $R = \mathbb{Q}$ be the ring of rational numbers.
 - (a) Give an example of a maximal ideal of R that is proper (i.e. $\neq \{0\}, \neq R$), or prove that no such ideal exists.
 - (b) Give an example of a principal ideal of R that is proper (i.e. $\neq \{0\}, \neq R$), or prove that no such ideal exists.
- (6.6) Let $R = \mathbb{Q}[x, y]$ be the ring of polynomials in two variables with rational coefficients.
 - (a) Give an example of a maximal ideal of R that is proper (i.e. $\neq \{0\}, \neq R$), or prove that no such ideal exists.
 - (b) Give an example of a principal ideal of R that is proper (i.e. $\neq \{0\}, \neq R$), or prove that no such ideal exists.

7. FIELDS AND GALOIS THEORY

- (7.1) (a) Prove that the polynomial x⁴ + x + 1 is irreducible over Q.
 (b) What about over F₂ and F₃?
- (7.2) Let A be an invertible matrix over a finite field. Prove there exists an integer k such that $A^k = I$.
- (7.3) Show that if a finite subset of a field forms a group, then it must be cyclic.
- (7.4) Show that a field extension of degree 2 is normal.
- (7.5) Prove that if K is an algebraic extension of k, G a finite group of automorphisms of K with fixed field F, then K is a Galois extension of F.
- (7.6) Let R be an integral domain with field of fractions K. We say R is *integrally closed* if no element of K R is a root of a monic polynomial in R.
 - (a) Prove that a unique factorization domain is integrally closed.
 - (b) For k a field and t an indeterminant, show that $k[t^2, t^3]$ is not integrally closed.
- (7.7) Let K be a field containing the field F. Let a be an element of K that is algebraic over F. Show that the field F(a) equals F[a], the polynomials in a over F.
- (7.8) Let K be an extension field of F. If a and b are elements of K that are algebraic over F, prove a + b is algebraic over F. (You may not use any theorems about algebraic extensions of algebraic extensions.)

- (7.9) Let p be an odd prime and \mathbf{F}_p the field of p elements. How many elements of \mathbf{F}_p have square roots in \mathbf{F}_p ? How many have cube roots in \mathbf{F}_p ?
- (7.10) Prove or disprove that it is possible for a fourth degree polynomial to a have a Galois group of \mathbb{Z}_6 .
- (7.11) Prove or disprove that it is possible for a fifth degree polynomial to a have a Galois group of \mathbb{Z}_6 .
- (7.12) Let \mathbb{F} be a finite extension field of \mathbb{Q} , and let $a, \xi \in \mathbb{F}$ such that $\xi^n = a$. Prove that the Galois group of $x^n a$ over \mathbb{F} is abelian.
- (7.13) Prove or disprove that a 1° angle can be constructed using a straightedge and compass alone.
- (7.14) Show that $x^3 + 3x + 1$ is irreducible over \mathbb{Q} . Let α denote a root. Express α^{-1} and $(1 + \alpha)^{-1}$ as a \mathbb{Q} -linear combination of $1, \alpha, \alpha^2$.
- (7.15) Show that $x^6 + 3$ is irreducible over \mathbb{Q} , but is not irreducible over $\mathbb{Q}(\omega)$, where ω is a primitive sixth root of unity.
- (7.16) Prove that every irreducible factor of the *n*th cyclotomic polynomial Φ_n over a field K has the same degree.
- (7.17) Let L be an extension of the field K and M be an extension of L. Prove $[M:K] = [M:L] \cdot [L:K].$
- (7.18) Suppose L_1 and L_2 are two extension fields of K. Prove $[K(L_1, L_2) : K] \leq [L_1 : K][L_2 : K].$
- (7.19) Suppose $[K(\alpha) : K]$ and [L : K] are relatively prime. Show that the minimal polynomial of α over L has coefficients in K.
- (7.20) Suppose $\alpha \notin K$ is algebraic over K and β is transcendental over K. Prove that $K(\alpha, \beta)$ is not a simple extension of K.
- (7.21) Suppose β is transcendental over K. Prove that $K(\beta)$ is not algebraically closed.
- (7.22) Prove that a finite extension is simple if and only if it contains finitely many intermediate subfields.
- (7.23) Let subfields M_1 and M_2 of L be normal extensions of K. Prove that $K(M_1, M_2)$ and $M_1 \cap M_2$ are also normal extensions of K.
- (7.24) Give an example, with proof, where L is a normal extension of K, M is a normal extension of L, and yet M is not a normal extension of K.
- (7.25) Let L be an algebraic extension of K. Show that there is a greatest intermediate field for which M is a normal extension of K.
- (7.26) Prove that L is a separable extension of K and M is a separable extension of L if and only if M is a separable extension of K.
- (7.27) Let Char K = p > 0 with f irreducible in K[x]. Show that f can be written in the form $f(x) = g(x^{p^n})$, where n is a nonnegative integer and g is irreducible and separable.
- (7.28) Suppose L and M are finite, separable extensions of K. Prove that the following are equivalent:

(i) For every pair of monomorphisms $\sigma : L \to \overline{K}$ and $\tau : M \to \overline{K}$ fixing K, there exists a monomorphism $\phi : K(L, M) \to \overline{K}$ fixing K such that $\phi|_L = \sigma$ and $\phi|_M = \tau$.

(ii) For every pair of monomorphisms $\sigma: L \to \overline{K}$ and $\tau: M \to \overline{K}$ fixing K, there exists a unique monomorphism $\phi: K(L, M) \to \overline{K}$ fixing K such that $\phi|_L = \sigma$ and $\phi|_M = \tau$.

(iii) $[K(L, M) : K] = [L : K] \cdot [M : K].$

- (iv) $L = K(\alpha)$, where the minimal polynomial of α over K is irreducible in M[x].
- (v) $M = K(\beta)$, where the minimal polynomial of β over K is irreducible in L[x].
- (7.29) (a) Prove that every finite extension of a finite field is Galois.

(b) Prove that the Galois group is cyclic.

- (7.30) Find the Galois group of $x^4 4x^2 + 2$ over \mathbb{Q} .
- (7.31) Find the Galois groups of $x^3 x + 1$ over \mathbb{F}_2 and \mathbb{F}_3 .
- (7.32) Let \mathbb{Q} be the base field.

(a) Let ω be a primitive 7th root of unity. Find the minimal polynomial for $\omega + \omega^2 + \omega^4$.

(b) Show that the intersection of the splitting fields for Φ_7 and $x^4 - 7$ is a quadratic extension of \mathbb{Q} .

(c) Find the Galois group for the splitting field of $\Phi_7 \cdot (x^4 - 7)$.

(7.33) Show that the Galois group fo $x^{15} - 2$ over \mathbb{Q} can be generated by elements ρ , σ , and τ satisfying

$$\rho^{15} = \sigma^4 = \tau^2 = 1,$$

$$\sigma^{-1}\rho\sigma = \rho^7,$$

$$\tau^{-1}\rho\tau = \rho^{14},$$

$$\tau^{-1}\sigma\tau = \sigma.$$

- (7.34) Let $f(x) \in K[x]$ be irreducible of degree 6.
 - (I) Suppose first that f is not separable.
 - (a) What are the possibilities for the characteristic of K?
 - (b) What is the form of f for these characteristics?
 - (c) What is the degree of the splitting field of f for these characteristics?

(II) Now suppose instead that f is separable, that α is a root of f, and that f has splitting field L of degree 18.

(d) How many automorphisms $K(\alpha) \to K(\alpha)$ are there that fix K?

- (e) Find the group of automorphisms of L fixing K, expressing it as a subgroup of S_6 .
- (7.35) Suppose α is transcendental over K. Let σ be the automorphism of K which fixes K and takes α to $1/(1 \alpha)$. Verify that σ^3 is the identity and determine the fixed field of σ .
- (7.36) Suppose L is a Galois extension of K. Prove that $L = K(\alpha)$ if and only if the images of α under G are distinct.
- (7.37) Given a finite group G, show there exists a Galois extension L: K with Galois group isomorphic to G.
- (7.38) Suppose L and M are distinct cyclic extensions of K. Find necessary and sufficient conditions for K(L, M) to be a cyclic extension of K.
- (7.39) Suppose L is a finite normal extension of K and that f is irreducible in K[x]. Suppose g and h are irreducible monic factors of f in L[x]. Show that there is an automorphism σ of L which fixes K and such that $\sigma(g) = h$.
- (7.40) Suppose K has characteristic 0 and the extension L has basis $\{\beta_1, \ldots, \beta_n\}$ over K. Let H be a subgroup of the group of automorphisms of L fixing K. Let $\gamma_j = \sum_{\sigma \in H} \sigma(\beta_j)$. Prove that $K(\gamma_1, \ldots, \gamma_n)$ is the fixed field of H.