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1. Linear Algebra

(1.1) State and prove the Spectral Theorem on the diagonalization of real symmetric ma-
trices.

(1.2) Prove the following are equivalent for an n× n real matrix A.
(a) The columns of A form an orthonormal basis for Rn.
(b) The rows of A form an orthonormal basis for Rn.
(c) For every x ∈ Rn, ||Ax|| = ||x||.
(d) For every x, y ∈ Rn, Ax · Ay = x · y.

(1.3) Let A and B be diagonalizable matrices such that AB = BA. Prove there is a matrix
P such that P−1AP and P−1BP are both diagonal matrices.

(1.4) Let F be a field. For m and n positive integers, let Mm×n be the vector space of
m×n matrices over F. Fix m and n, and fix matrices A and B in Mm×n. Define the
linear transformation T from Mn×m to Mm×n by

T (X) = AXB.

Prove that if m 6= n, then T is not invertible.
(1.5) Prove or disprove each of the following for square matrices A and B over C:

(a) A+B is nonsingular if A and B are nonsingular.
(b) A + B is nonsingular if A and B are real symmetric matrices and all of their

eigenvalues are strictly positive.
(c) A+B is nonsingular if all of the eigenvalues of A+A∗ and B +B∗ are strictly

positive. (A∗ denotes the conjugate transpose of A.)
(1.6) Suppose that the r × r upper left minor M of A is nonsingular but that every other

minor containing M is singular. Prove that rank(A) = r.
(1.7) Let V and W be finite dimensional vector spaces, let X be a subspace of W , and

let T : V → W be a linear map. Prove that the dimension of T−1(X) is at least
dimV − dimW + dimX.
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(1.8) Prove that there exists a real symmetric matrix A such that

A2 =


1 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

 .
(1.9) Construct a 3 × 3 matrix with eigenvalue 1 and mapping [0, 1, 2]T and [1, 1, 1]T to

[1, 2, 3]T and [4, 5, 6]T , respectively.
(1.10) Prove or give a counterexample to each of the following. Unless otherwise noted, A

is an n× n complex matrix.
(a) If λ is an eigenvalue of A and µ ∈ C, then λ− µ is an eigenvalue of A− µI.
(b) If A is real and λ is an eigenvalue of A, then so is −λ.
(c) If A is real and λ is an eigenvalue of A, then so is λ.
(d) If λ is an eigenvalue of A and A is nonsingular, then λ−1 is an eigenvalue of

A−1.
(e) If all the eigenvalues of A are zero, then A = 0.
(f) If A is diagonalizable and all its eigenvalues are equal, then A is diagonal.

(1.11) Suppose the matrix A satisfies A2 = A. Prove A is diagonalizable.
(1.12) Prove that if A is a real symmetric n× n matrix, then

inf
v∈Rn\{0}

〈Av, v〉
〈v, v〉

is necessarily an eigenvalue of A. Is the statement true, if A is not required to be
symmetric?

(1.13) Find necessary and sufficient conditions that {(a, b) , (c, d)} is a basis of R2.
(1.14) For which m is the vector (1, 2,m, 5) a linear combination of (0, 1, 1, 1), (0, 0, 0, 1),

and (1, 1, 2, 0)?
(1.15) Find the set of all 6 × 6 matrices M such that there exists another matrix N such

that N−1MN is a multiple of the identity matrix.
(1.16) Suppose that a 7×7 complex matrix M satisfies (M − I) (M∗ − 2I) = 0. Prove that

M∗ = M , and find all possible sets of eigenvalues of M .
(1.17) Suppose that ‖•‖1 and ‖•‖2 are norms on a vector space V . Prove or disprove that

(a) ‖v‖3 = 5 ‖v‖1 ‖v‖2 for v ∈ V defines a norm on V .
(b) ‖v‖4 = 5 ‖v‖1 + ‖v‖2 for v ∈ V defines a norm on V .

(1.18) Let P2 = P2(R) denote the real vector space of real polynomials of degree at most 2.

(a) Prove that 〈p, q〉 =

∫ 1

−1
p(x) q(x) dx is an inner product on P2.

(b) Show that there is a unique q ∈ P2 such that∫ 1

−1
p(x) cos(πx) dx = 〈p, q〉

for all p and find it.
(1.19) Let u and v be eigenvectors corresponding to different eigenvalues of the real sym-

metric matrix A. Prove that u andv are orthogonal.
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(1.20) Define an inner product on the space of real polynomials by

〈f, g〉 =

∫ ∞
0

f(x)g(x)e−x dx.

(a) Find an orthonormal basis for the subspace spanned by 1, x, and x2.
(b) Calculate the projection of x3 onto this subspace.

2. Groups and Subgroups, Permutations

(2.1) Let H be a nonempty subset of a multiplicative group G such that H is closed under
the group operation. Suppose in addition that if x, y ∈ H, then xy−1 ∈ H. Prove or
disprove that H is necessarily a subgroup of G.

(2.2) Prove that any group of order 6 is isomorphic to either Z6 or S3 (the group of
permutations of three objects).

(2.3) Suppose that the group G is generated by elements x and y that satisfy x5y3 =
x8y5 = 1. Is G the trivial group?

(2.4) Prove that every finite group is isomorphic to
1. A group of permutations;
2. A group of even permutations.

(2.5) Let F2 = {0, 1} be the field with two elements. Let G be the group of invertible
2 × 2 matrices with entries in F2. Show that G is isomorphic to S3, the group of
permutations of three objects.

3. Homomorphisms, Factor Groups

(3.1) Let p be the smallest prime factor of a nontrivial finite group. Prove that any
subgroup of index p is normal.

(3.2) Show that there are at least two nonisomorphic nonabelian groups of order 24.
(3.3) Let G be a group and N be a proper normal subgroup of G. Suppose that there does

not exist a subgroup H of G satisfying N $ H $ G. Prove that the index of N in G
is finite and equal to a prime number.

4. Classification of Abelian Groups

(4.1) Let G be an abelian group. Suppose G has subgroups of orders m and n. Show G
has a subgroup of order the least common multiple of m and n.

(4.2) Let A, B, and C be finite abelian groups. Prove that if A×B is isomorphic to A×C,
then B is isomorphic to C.

5. Advanced group theory, Sylow theorems

(5.1) Prove that every finite group of prime power order has a nontrivial center.
(5.2) Let G be a group of permutations of {1, 2, . . . , n}. We say G is transitive if for every

i, j, there exists σ ∈ G such that σ(i) = j. Prove the order of a transitive group G is
divisible by n.

(5.3) Let G and H be finite groups of relatively prime order. Show that Aut(G×H), the
group of automorphisms of G×H, is isomorphic to the direct product of Aut(G) and
Aut(H).

(5.4) Suppose that G is a group such that every subgroup H of G is normal. Does this
imply that G is abelian?
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(5.5) Prove that every group of order 99 contains a nontrivial, proper, normal subgroup.

6. Rings and Ideals

(6.1) Let R be a ring with 1, and let I be the left ideal of R generated by {ab−ba | a, b ∈ R}.
Prove that I is a two-sided ideal.

(6.2) Let R be a ring with identity, and let u be an element of R with a right inverse.
Prove that the following conditions on u are equivalent:

1. u has more than one right inverse;
2. u is a left zero divisor;
3. u is not a unit.

(6.3) Suppose that R is a subring of a commutative ring S and that R is of finite index n
in S. Let m be an integer that is relatively prime to n. Prove that the natural map
R/mR→ S/mS is a ring isomorphism.

(6.4) Let R be a ring with 1. Suppose that A1, A2, . . . , An are left ideals in R such that
R = A1 ⊕A2 ⊕ · · · ⊕An (as additive groups). Prove that there are elements ui ∈ Ai
such that for any elements ai ∈ Ai, aiui = ai and aiuj = 0 if j 6= i.

(6.5) Let R = Q be the ring of rational numbers.
(a) Give an example of a maximal ideal of R that is proper (i.e. 6= {0}, 6= R), or

prove that no such ideal exists.
(b) Give an example of a principal ideal of R that is proper (i.e. 6= {0}, 6= R), or

prove that no such ideal exists.
(6.6) Let R = Q [x, y] be the ring of polynomials in two variables with rational coefficients.

(a) Give an example of a maximal ideal of R that is proper (i.e. 6= {0}, 6= R), or
prove that no such ideal exists.

(b) Give an example of a principal ideal of R that is proper (i.e. 6= {0}, 6= R), or
prove that no such ideal exists.

7. Fields and Galois Theory

(7.1) (a) Prove that the polynomial x4 + x+ 1 is irreducible over Q.
(b) What about over F2 and F3?

(7.2) Let A be an invertible matrix over a finite field. Prove there exists an integer k such
that Ak = I.

(7.3) Show that if a finite subset of a field forms a group, then it must be cyclic.
(7.4) Show that a field extension of degree 2 is normal.
(7.5) Prove that if K is an algebraic extension of k, G a finite group of automorphisms of

K with fixed field F , then K is a Galois extension of F .
(7.6) Let R be an integral domain with field of fractions K. We say R is integrally closed

if no element of K −R is a root of a monic polynomial in R.
(a) Prove that a unique factorization domain is integrally closed.
(b) For k a field and t an indeterminant, show that k[t2, t3] is not integrally closed.

(7.7) Let K be a field containing the field F . Let a be an element of K that is algebraic
over F . Show that the field F (a) equals F [a], the polynomials in a over F .

(7.8) Let K be an extension field of F . If a and b are elements of K that are algebraic over
F , prove a + b is algebraic over F . (You may not use any theorems about algebraic
extensions of algebraic extensions.)
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(7.9) Let p be an odd prime and Fp the field of p elements. How many elements of Fp have
square roots in Fp? How many have cube roots in Fp?

(7.10) Prove or disprove that it is possible for a fourth degree polynomial to a have a Galois
group of Z6.

(7.11) Prove or disprove that it is possible for a fifth degree polynomial to a have a Galois
group of Z6.

(7.12) Let F be a finite extension field of Q, and let a, ξ ∈ F such that ξn = a. Prove that
the Galois group of xn − a over F is abelian.

(7.13) Prove or disprove that a 1◦ angle can be constructed using a straightedge and compass
alone.

(7.14) Show that x3 + 3x + 1 is irreducible over Q. Let α denote a root. Express α−1 and
(1 + α)−1 as a Q-linear combination of 1, α, α2.

(7.15) Show that x6 + 3 is irreducible over Q, but is not irreducible over Q(ω), where ω is
a primitive sixth root of unity.

(7.16) Prove that every irreducible factor of the nth cyclotomic polynomial Φn over a field
K has the same degree.

(7.17) Let L be an extension of the field K and M be an extension of L. Prove
[M : K] = [M : L] · [L : K].

(7.18) Suppose L1 and L2 are two extension fields of K. Prove [K(L1, L2) : K] ≤ [L1 :
K][L2 : K].

(7.19) Suppose [K(α) : K] and [L : K] are relatively prime. Show that the minimal poly-
nomial of α over L has coefficients in K.

(7.20) Suppose α /∈ K is algebraic over K and β is transcendental over K. Prove that
K(α, β) is not a simple extension of K.

(7.21) Suppose β is transcendental over K. Prove that K(β) is not algebraically closed.
(7.22) Prove that a finite extension is simple if and only if it contains finitely many inter-

mediate subfields.
(7.23) Let subfields M1 and M2 of L be normal extensions of K. Prove that K(M1,M2)

and M1 ∩M2 are also normal extensions of K.
(7.24) Give an example, with proof, where L is a normal extension of K, M is a normal

extension of L, and yet M is not a normal extension of K.
(7.25) Let L be an algebraic extension of K. Show that there is a greatest intermediate

field for which M is a normal extension of K.
(7.26) Prove that L is a separable extension of K and M is a separable extension of L if

and only if M is a separable extension of K.
(7.27) Let Char K = p > 0 with f irreducible in K[x]. Show that f can be written in

the form f(x) = g(xp
n
), where n is a nonnegative integer and g is irreducible and

separable.
(7.28) Suppose L and M are finite, separable extensions of K. Prove that the following are

equivalent:
(i) For every pair of monomorphisms σ : L → K and τ : M → K fixing K, there
exists a monomorphism φ : K(L,M)→ K fixing K such that φ|L = σ and φ|M = τ .

(ii) For every pair of monomorphisms σ : L→ K and τ : M → K fixing K, there
exists a unique monomorphism φ : K (L,M) → K fixing K such that φ|L = σ and
φ|M = τ .
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(iii) [K(L,M) : K] = [L : K] · [M : K].
(iv) L = K(α), where the minimal polynomial of α over K is irreducible in M [x].

(v) M = K (β), where the minimal polynomial of β over K is irreducible in L[x].
(7.29) (a) Prove that every finite extension of a finite field is Galois.

(b) Prove that the Galois group is cyclic.
(7.30) Find the Galois group of x4 − 4x2 + 2 over Q.
(7.31) Find the Galois groups of x3 − x+ 1 over F2 and F3.
(7.32) Let Q be the base field.

(a) Let ω be a primitive 7th root of unity. Find the minimal polynomial for
ω + ω2 + ω4.

(b) Show that the intersection of the splitting fields for Φ7 and x4−7 is a quadratic
extension of Q.

(c) Find the Galois group for the splitting field of Φ7 · (x4 − 7).
(7.33) Show that the Galois group fo x15− 2 over Q can be generated by elements ρ, σ, and

τ satisfying

ρ15 = σ4 = τ 2 = 1,

σ−1ρσ = ρ7,

τ−1ρτ = ρ14,

τ−1στ = σ.

(7.34) Let f(x) ∈ K[x] be irreducible of degree 6.
(I) Suppose first that f is not separable.
(a) What are the possibilities for the characteristic of K?
(b) What is the form of f for these characteristics?
(c) What is the degree of the splitting field of f for these characteristics?
(II) Now suppose instead that f is separable, that α is a root of f , and that f has

splitting field L of degree 18.
(d) How many automorphisms K(α)→ K(α) are there that fix K?
(e) Find the group of automorphisms of L fixing K, expressing it as a subgroup of

S6.
(7.35) Suppose α is transcendental over K. Let σ be the automorphism of K which fixes

K and takes α to 1/(1 − α). Verify that σ3 is the identity and determine the fixed
field of σ.

(7.36) Suppose L is a Galois extension of K. Prove that L = K(α) if and only if the images
of α under G are distinct.

(7.37) Given a finite group G, show there exists a Galois extension L : K with Galois group
isomorphic to G.

(7.38) Suppose L and M are distinct cyclic extensions of K. Find necessary and sufficient
conditions for K(L,M) to be a cyclic extension of K.

(7.39) Suppose L is a finite normal extension of K and that f is irreducible in K[x]. Suppose
g and h are irreducible monic factors of f in L[x]. Show that there is an automorphism
σ of L which fixes K and such that σ(g) = h.

(7.40) SupposeK has characteristic 0 and the extension L has basis {β1, . . . , βn} overK. Let
H be a subgroup of the group of automorphisms of L fixing K. Let γj =

∑
σ∈H σ(βj).

Prove that K(γ1, . . . , γn) is the fixed field of H.
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