Topology Preliminary Examination

January 18, 2013

- 1. Let A be connected subspace of a topological space X. Prove that the closure of A in X is connected.
- 2. Let $C([0,\infty))$ denote the space of continuous real-valued functions on the interval $[0,\infty)$. Consider the topology generated by sets of the form

$$U(f,\delta) = \left\{ g \in C([0,\infty)) : \sum_{i=0}^{\infty} |f(i) - g(i)| < \delta \right\}.$$

Prove or disprove that $C([0,\infty))$ is Hausdorff with this topology.

- 3. Let \mathbb{R} denote the real line **as a set**. Let \mathcal{B} be the collection of subsets of \mathbb{R} of the following two forms
 - sets of the form $(-b, -a) \cup (a, b)$, where 0 < a < b and (a, b) denotes the usual interval in \mathbb{R} ;
 - sets of the form $(-\infty, -d) \cup (-c, c) \cup (d, \infty)$, where 0 < c < d.
 - (a) Show that \mathcal{B} is a basis for a topology on \mathbb{R} .
 - (b) For \mathbb{R} with this topology, decide what are the point(s) of convergence, if any, for the following sequences:
 - i. $x_n = 1 \frac{1}{n}$ ii. $x_n = n$
- 4. Let $f: X \to Y$ be a continuous map that is a bijection.
 - (a) Show that f is a homeomorphism if X is compact and Y is Hausdorff.
 - (b) Given an example of a continuous bijection that is not a homeomorphism.
- 5. Compute the homology of the Klein bottle.
- 6. Let M be a surface without boundary, and let $x \in M$. Compute the homology groups $H_*(M, M x)$.
- 7. Suppose $A \subset X$ is a (strong) deformation retract, and let $a_0 \in A$. Show that the inclusion $i: (A, a_0) \to (X, a_0)$ induces an isomorphism $i_*: \pi_1(A, a_0) \to \pi_1(X, a_0)$.
- 8. Let $X = \mathbb{RP}^2 \times \mathbb{RP}^2$. Compute $\pi_1(X)$, describe the universal cover \widetilde{X} , and describe the deck transformations of $\pi_1(X)$ on \widetilde{X} .