
FIELDS AND GALOIS THEORY

GEORGE GILBERT

1. Rings and Polynomials

Given a polynomial of degree n, there exist at most n roots in the field. Given a polynomial
that factors completely,

(x− r1) (x− r2) ... (x− rn) = xn − (r1 + ...+ rn)xn−1

+

r1r2 + ...+ rn−1rn︸ ︷︷ ︸
(n
2) terms

xn−2 + . . .+ (−1)nr1 · · · rn.

We define the first, second, ... symmetric polynomials to be

s1 (x) =
∑
j

xj,

s2 (x) =
∑
j,k

xjxk,

etc. A general symmetric polynomial p (x1, ..., xn) is a polynomial that is unchanged
whenever the variables are permuted.

Theorem 1. Every symmetric polynomial in n variables is a polynomial in s1 (x) , ..., sn (x).

Problem 1. Find a polynomial satisfied by the squares of the roots of x2 − 5x+ 3 without
finding the roots.

Proof. We have r1 + r2 = 5, r1r2 = 3, so y2 − (r21 + r22) y + r21r
2
2 = y2 − (r21 + r22) y + 9, with

the rest left to the reader. �

The discriminant of a polynomial is

(r1 − r2)2 ...(all possible pairs)... (rn−1 − rn)2 .

Because it is symmetric, it may be expressed in terms of the coefficients of the polynomial
and is 0 if and only if there are repeated roots.

Fitting a polynomial of degree at most n that passes through n + 1 points (xi, yi), i =
0, 1, . . . , n requires us to solve the linear system

anx
n
0 + ...a1x

1
0 + a0 = y0

...

anx
n
n + ...a1x

1
n + a0 = y0
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for the coefficients a0, a1, ..., an for any y0, y1, ...yn. Then we need to solve
1 x0 x20... xn0
1 x1 x21... xn1
... ... ... ...
1 xn ... xnn




a0
a1
...
an

 =


y0
y1
...
yn

 ,

which means the Vandermonde determinant∣∣∣∣∣∣∣∣
1 x0 x20 ... xn0
1 x1 x21 ... xn1

...
1 xn x2n ... xnn

∣∣∣∣∣∣∣∣ 6= 0.

The square of this determinant is the discriminant.
Given a field k, let k [x] be the polynomials over k. This ring is a Euclidean domain. This

means that there is a function d : k [x] − {0} → Z≥0 such that for all f, g ∈ k [x], g 6= 0,
there exist q and r such that

f = qg + r

where either r = 0 or 0 ≤ d (r) < d (g). The other condition is that if g|f , then d (g) ≤ d (f).
For polynomials, d (f) = degree of f . Another example of a Euclidean domain is Z. The
Euclidean algorithm is used to to find GCDs of elements of the ring.

Theorem 2. Every Euclidean domain is a principal ideal domain.

Note: an ideal is a subring that is closed under multiplication by any element in the
whole ring. A principal ideal is the set of multiples of one particular element of the ring.
For example, (2) = {2n : n ∈ Z} = (−2) is a principal ideal in Z. We say 2 and −2 are
associates because they generate the same ideal or, equivalently, each is a unit multiple of
the other. For example, x2 + 3 and 6 + 2x2 are associates in C [x].

Proof. Let I be a nonzero ideal. Let x have an element such that d (x) is minimal. Choose
y ∈ I. Then y = qx+ r with r = 0 or d (r) < d (x). The second possibility is impossible, so
every element of the ideal is a multiple of x. �

Theorem 3. Every principal ideal domain is a unique factorization domain.

Note: unique factorization means unique up to rearrangement and up to multiplication
by units.

2. Field extensions

The following is useful, especially when working with finite fields.

Theorem 4. A finite multiplicative subgroup of a field is cyclic.

For k a field, let k (x) be the field of rational functions, that is

k (x) =

{
p (x)

q (x)
: q (x) 6= 0; p (x) , q (x) ∈ k [x]

}
= {(p (x) , q (x)) : q (x) 6= 0; p (x) , q (x) ∈ k [x]}�equivalence relation

If K ⊆ L are fields, we say that L is a field extension of K. We write L�K to denote
the extension of K by L. If α ∈ L, then there are two types of elements. We say α is
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algebraic over K if there exists p (x) ∈ K [x] such that p (α) = 0. Otherwise, α is called
transcendental over K. Then, if α is transcendental, then K [α] ∼= K [x], K (α) ∼= K (x).

If α is algebraic, then K [α] = K (α) ∼= K[x]
(f)

, where f is the “minimal polynomial” of α, i.e.

a polynomial of minimal degree such that f(α) = 0, which is necessarily irreducible.
Proof: Map K [x]→ K [α] by p (x) 7→ p (α), which is clearly an onto map. Then the kernel
is {g : g (α) = 0} = (f), so by the first isomorphism theorem for rings, we are done. If f is
irreducible, (f) is a maximal ideal, which implies our quotient ring is a field.

An ideal P is called a prime ideal if uv ∈ P implies u ∈ P or v ∈ P . If you quotient a
ring by a prime ideal, then the quotient is an integral domain.

If α is algebraic over K, then K [α] is a finite-dimensional vector space over K, where the
dimension is the degree of the minimal polynomial f minus one. The basis could be chosen
to be

1, α, α2, ..., αdeg f−1

We have L�K is finite if L is finite-dimensional as a vector space over K. We denote the
dimension [L : K]. We say L�K is algebraic if every element of L is algebraic over K.

Theorem 5. Every finite extension is algebraic.

Theorem 6. If K ⊆ L ⊆M are fields, then [M : K] = [M : L] [L : K].

Proof. Take a basis {m1, . . .} for M over L and a basis {`1, ...} for L over K. Then you can
prove that {mi`j} is a basis for M over K. �

Theorem 7. Suppose K ⊆ L ⊆M are fields. Then M�K is algebraic iff M�L and L�K
are algebraic.

Corollary 8. If α and β are algebraic over K, then so are α± β, αβ, α/β .

3. Splitting fields, normal and separable extensions

Definition 9. For f ∈ K [x], L is the splitting field for f if it is the smallest field over
which f splits (i.e. factors completely).

Theorem 10. If L is the splitting field of f ∈ K [x], The index [L : K] divides (deg f)! .

Proof. (Induction on n = deg f ) For n = 1, f (x) = ax + b with a, b ∈ K, a 6= 0, and so
x = −b

a
is the only root and is in K. Then L = K, and deg f = 1 = [L : K].

Now assume that for some k ≥ 1 the result has been proven for 1 ≤ n ≤ k.
Consider a polynomial p of degree k+1. Then for a fixed root α of f , the minimal polynomial
mα (x) ∈ K [x] of α divides p (x). There are two cases.

Case 1 If mα (x) = p (x), then [K (α) , K] = k + 1, since
{

1, α, α2, ..., αk
}

is then a basis for
the vector space K (α) over K. In that case, p (α) factors as (x− α) p̃ (x), where p̃ is
a polynomial with coefficients in K (α), of degree k−1. By the induction hypothesis,
[L : K (α)] divides k!, and so [L : K] = [L : K (α)] [K (α) : K] must divide (k + 1)! .

Case 2 If mα (x) is a nontrivial factor of p (x), then p (x) = mα (x) qα (x) for some polynomial
qα (x) ∈ K [x]. Letting ` = degmα (x), r = deg qα (x), then we have ` + r = k + 1
and `, r ≥ 1. Let L1 be the splitting fields of mα (x) over K [x]. By the induction
hypothesis, [L1 : K] divides `! and [L : L1] divides r! — since qα (x) ∈ K [x] ⊂ L1 [x],

so that [L : K] = [L : L1] [L1 : K] divides `!r!, which divides `!r!
(

(k+1)!
`!r!

)
= (k + 1)!.

Here we are using the fact that (k+1)!
`!r!

is a binomial coefficient and thus an integer.
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Therefore, by induction [L : K] divides n! if f is a polynomial over K of degree n, for any
n ≥ 1. �

Definition 11. An algebraic closure of K is an algebraic extension L of K such that
every element in L [x] splits in L [x].

Theorem 12. For any field K, the algebraic closure of K exists and is unique up to an
isomorphism that fixes every element of K.

Proof. (uses the Axiom of Choice in the form of Zorn’s Lemma) �

Definition 13. We say that L�K is normal if every irreducible polynomial in K [x] that
has a root in L splits over L.

Example 1. The extension Q
(√

2
)
�Q is normal.

Example 2. The extension Q
(

3
√

2
)
�Q is not normal. For example, the polynomial x3 − 2

has a root in Q
(

3
√

2
)
, but it does not split in Q

(
3
√

2
)
, since the other two roots are not real.

Theorem 14. The extension L�K is normal if and only if L is the splitting field of some
set of polynomials over K.

Example 3. The extension Q
(√

2
)
�Q is the splitting field of x2 − 2 over Q .

Proof. (Sketch). (=⇒) Let the set of polynomials be the set of all minimal polynomials of
every element of L.

(⇐=) Take β ∈ L. The field L is generated by roots of some set of polynomials. Then
β = h (α1, ..., αn) with each αj a root of one of these polynomials and with h (x1, ..., xn) ∈
K [x1, ..., xn]. We possibly increase the value of n by also including in all of the other roots
of the minimal polynomials of each αj in K [x], but without changing the polynomial h, so
that h depends on more variables but does not depend on the added variables. Form

q(x) =
∏
σ∈Sn

(
x− h

(
ασ(1), ασ(2), ..., ασ(n)

))
,

which is very symmetric and can be shown to be in K [x], and each h
(
ασ(1), ασ(2), ..., ασ(n)

)
is in L. [Idea of proof of symmetric fact: Since it is a symmetric, it is a polynomial in the
symmetric functions of the roots. The symmetric functions of the roots can be written in
terms of the minimal polynomial coefficients.] Next, given β and an irreducible polynomial
p (x) with β as a root, this irreducible polynomial is a scalar multiple of the minimal poly-
nomial of β, and thus p (x) is a factor of q (x) above. But since q splits as above, this implies
that p (x) splits in L [x]. We have shown that every irreducible polynomial with β as a root
factors in L [x], so that L is a normal extension of K. �

If K ⊆ L are fields, let AutK (L) denote the set of all automorphisms of L (i.e. field
isomorphisms from L to itself) that fix K.

Theorem 15. If K ⊆ L ⊆M are fields and if M is normal over K. Then the following are
equivalent:

(1) L�K is normal.
(2) σ ∈ AutK (M) implies that σ (L) ⊆ L.
(3) σ ∈ AutK (M) implies that σ (L) = L.
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Proof. Heart of proof: If p (x) has a root in L, then each σ ∈ AutK (M) permutes the roots
of p (x) ∈ K [x] because it must fix the coefficients of the polynomial. �

Definition 16. If f ∈ K [x] is irreducible, we say it is separable if it has distinct roots (in
some algebraic closure).

Observe that a polynomial f (x) has a multiple root if and only if its derivative shares
roots with f (x). [Sketch of proof: f (x) = (x− α)2 g (x) implies f ′ (x) = 2 (x− α) g (x) +
(x− α)2 g′ (x) = (x− α) {2g (x) + (x− α) g′ (x)}. You can also show that if f and f ′ share
a root β, then (x− β)2 divides f (x).] To determine if f and g (such as f ′) in K [x] in share
a common root, use the Euclidean algorithm to find that there exist a (x) , b (x) ∈ K [x] such
that

a (x) f (x) + b (x) g (x) = gcd (x) .

Suppose now that we have an irreducible polynomial f that is irreducible but not separable.
Then f and f ′ have a nonconstant common factor in K [x], which must be f itself (up to a
scalar). This implies that f ′ = 0. How can this happen? If

f (x) = anx
n + an−1x

n−1 + ...+ a0, n ≥ 1, an 6= 0,

and if
f ′ (x) = nanx

n−1 + (n− 1) an−1x
n−2 + ...+ a1 = 0,

Then the characteristic charK = p for some prime, and f (x) = g (xp) for some polynomial
g (x) ∈ K [x].

By the above, there are no inseparable polynomials in K [x] if K has characteristic zero.
There are no examples of inseparable polynomials in K [x] if K is a finite field because all

elements of a degree d extension of a field of order pn satisfy xp
nd −x, which has no multiple

roots.

Example 4. Let K be of characteristic p, and let K (t) be the field of rational functions
in t. Then f (x) = xp − t ∈ K [x] is irreducible. Observe that f ′ (x) = pxp−1 = 0, and
f (x) =

(
x− t1/p

)p
, since p |

(
p
k

)
for k = 1, 2, ..., k − 1.

Theorem 17. If K ⊆ L ⊆ M are fields, then M�K is separable if and only if M�L and
L�K are separable.

Theorem 18. (of the primitive element) A finite, separable extension L of K is simple,
meaning that L = K (α) for some α.

For example, Q
(√

2,
√

3
)

= Q (α) for α =
√

2 +
√

3.

4. Galois theory

Let K ⊂ L ⊂M , where K ⊂ L is an algebraic extension, and M is normal over K.

Definition 19. We say α and β in L are conjugate over K if they have the same minimal
polynomial.

Let σ : L→M be a monomorphism fixing K, such that σ takes an element of L to one of
its conjugates. L is normal iff σ (L) = L for all such σ. We also have L is separable, finite
iff there exist [L : K] different monomorphisms.

Definition 20. The field extension L�K is Galois if it is normal and separable (and finite
if you’re a wimp). Let Gal (L,K) = AutK (L) be the Galois group of L�K.
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Theorem 21. (FTGT) Given a Galois extension L�K, there is a 1 − 1 correspondence
between subgroups of the Galois group and intermediate fields. The correspondence is as
follows:

H ↔ LH = {x ∈ L : Hx = x}
Gal (L,M) ↔ M

H C G ↔ LH�K is normal

We have the picture

G

 L
M

}
H

K

Theorem 22. Galois groups are transitive on roots of the minimal polynomial of any ele-
ment.

(Transitive means that if α, β are conjugate over K, then there exits σ ∈ Gal (L,K) such
that σ (α) = β.)

Finite fields: With a finite base field, you never have a problem with checking separability.
A field with pn elements is the splitting field of xp

n − x over Fp (or any other subfield).
This is a separable polynomial, because its derivative is pnxp

n−1− 1 = −1, so it makes sense
to say the field with pn elements, which we denote by Fpn . Observe that [Fpn : Fp] = n
and is Galois. So, |Gal (Fpn ,Fp)| = n. Even better, it’s cyclic. The generator, x 7→ xp

(the Frobenius automorphism), fixes exactly the base field. Iterate n times and you get the
identity.

Roots of unity:

x6 − 1 = (x− 1) (x+ 1)
(
x2 + x− 1

) (
x2 − x+ 1

)
=: Φ1 (x) Φ2 (x) Φ3 (x) Φ6 (x) .

Note the appearance of Euler’s φ function: degree of φ (n) = Φn (x) = order of units
(Z�nZ)∗. Φn (x) ∈ Z[x] is the nth cyclotomic polynomial, irreducible over Q, but not
in general. It is the minimal polynomial over Q of exp

(
2πi
n

)
.

Let K (ξ) be an extension, suppose m (ξ) = 0, m (x) ∈ K [x] irreducible, m (x) |Φn (x) (so
ξn = 1 ). Let (n, char K) = 1 or char K = 0. So ξ is a multiplicative generator of the
nth roots of 1. Also ξk ∈ K (ξ), so K (ξ) is Galois over K, and any automorphism takes
σ (ξ) = ξi.

Exercise 1. K (ξ)�K is abelian and is in fact a subgroup of (Z�nZ)∗.

Example 5. Consider x4 − 4. x4 − 4 = (x2 + 2) (x2 − 2).
Over Q: splitting field is Q

(√
2,
√

2i
)
, and

[
Q
(√

2
)

: Q
]

= 2,
[
Q
(√

2,
√

2i
)

: Q
(√

2
)]

= 2,
so the order of the Galois group is 4. Thus, the group could be Z4 or Z2×Z2. Take σ ∈ Gal.
Then σ

(√
2
)

= ±
√

2 and σ
(√

2i
)

= ±
√

2i because the conjugates map to conjugates. The
choices determine σ. There are at most 4 automorphisms, so the set of all possible choices
is the Galois group. Since the order of every permutation is 2, the Galois group is Z2 × Z2.

Example 6. Next, consider x4 − 5.
Over Q: it is irreducible due to the Eisenstein criterion. (Recall that a polynomial q (x) ∈
Q [x] is irreducible if there exists a prime p that does not divide the first coefficient, di-
vides all the other coefficients, and p2 does not divide the constant term. In our case
p = 5.) Note that

[
Q
(

4
√

5
)

: Q
]

= 4. Note that x4 − 5 =
(
x2 −

√
5
) (
x2 +

√
5
)
. Then
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Q
(
i 4
√

5, 4
√

5
)

: Q
(

4
√

5
)]

=
[
Q
(
i, 4
√

5
)

: Q
(

4
√

5
)]

= 2. So the splitting field is degree 8. For

σ ∈ Gal, 4
√

5 7→ 4
√

5,− 4
√

5, i 4
√

5,−i 4
√

5. By transitivity, all occur, but in fact twice since the
order is 8; − 4

√
5 7→ opposite of above choice (no flexibility); i 7→ ±i both must occur, 4 times

each by transitivity. There are lots of groups over 8. The greatest order of an element is 4.
Define: σ by σ

(
4
√

5
)

= 4
√

5i and σ (i) = i; τ by τ
(

4
√

5
)

= 4
√

5 and τ (i) = −i. Then o (τ) = 2,
o (σ) = 4. Let G = 〈σ, τ〉. Then σ4 = 1, τ 2 = 1. Note that 〈σ〉 is a subgroup of index 2, so
it is normal. Thus, τστ−1 = τστ = σ3 by computing. So the group is not abelian. So in
fact this group is D4 = dihedral group of order 8 (symmetries of square). In fact, however,
all we need to note is that the Galois group must be the 2-Sylow subgroup of the symmetric
group S4, which is unique up to conjugation and is isomorphic to the dihedral group.

Theorem 23. Let K = Q (α) be Galois where the minimal polynomial f of α is monic with
integer coefficients. Suppose the p - disc (f) where

disc (f) =
∏

roots αj

(αi − αj)2

This number lives in the base field and must be preserved by the Galois group. View f ∈ Fp [x].
There is an injection

Gal (f,Fp) ↪→ Gal (K,Q)

that preserves the cycle structure on the roots.

Example 7. Consider Q
(√

2,
√

3
)
. Again. Note that we have the diagram

Q
(√

2,
√

3
)

↗2 ↖2

Q
(√

2
)

Q
(√

3
)

↖2 ↗2

Q

The Galois group is Z4 or Z2 × Z2 (only groups of order 4). There is only one subgroup
of order 2 in Z4, but by the FTGT and the diagram above, there should be at least two
subgroups. Thus, the Galois group is Z2 × Z2. Note that Q

(√
6
)

is the third intermediate
quadratic subfield.

Remark 1. The minimal polynomial of
√

2 +
√

3 is g (x) = x4 + 10x2 + 1. The Galois group
over Fp for any prime p is cyclic and injects into the Galois group of g over Q as long as p
does not divide the discriminant, which is(

4
√

5−
(
− 4
√

5
))2 (

4
√

5− i 4
√

5
)2 (

4
√

5−
(
−i 4
√

5
))2 ((

− 4
√

5
)
− i 4
√

5
)2
·

·
((
− 4
√

5
)
−
(
−i 4
√

5
))2 (

i
4
√

5−
(
−i 4
√

5
))2

= −32 00 = −2853.

In this case, the Galois group over such Fp is either trivial or Z2. This guarantees that
x4 + 10x2 + 1 factors into linear and quadratic factors over every Fp.

Example 8. Consider x4 − 5. Note that p divides the discriminant if and only if it has
repeated factors over Fp.



8 GEORGE GILBERT

Let p = 3. It has no root (by plugging in). If it factors, it must factor into two quadratics,
which we may assume are monic:

x4 − 5 = x4 + 1 =
(
x2 + ax± 1

) (
x2 − ax± 1

)
= x4 +

(
±2− a2

)
x2 + 1.

So we need

±2− a2 ≡ 0 mod 3.

So a = 1 with − works:

x4 − 5 =
(
x2 + x− 1

) (
x2 − x− 1

)
.

The Galois group over F3 is Z2, since Zn is the Galois group of Fpn , the splitting field of
xp

n − x and the unique extension Fp of degree n. Let’s say (1, 2) (3, 4) ∈ Gal (K,Q) is the
cycle that comes from F3.

Over F11, the Galois group of x4−5 = (x− 3) (x− 2) (x2 + 4) is Z2 and over Q, the Galois
group of x4 − 5 has a 2-cycle. Given the cycle assumption from p = 3, we can’t specify the
2-cycle coming from F11, but can assume it is either (1, 2) or (1, 3) (other possibilities are
equivalent to this choice by relabeling).

Over F17, proceeding as for p = 3, we see x4 − 5 is irreducible. Thus, its Galois group Z4.
Over Q that means we have a 4-cycle in the Galois group.

We mention, that the Galois group of x4 − 5 = (x− 34) (x− 37) (x− 64) (x− 67) over
F101 is trivial. (This is the first prime for which this happens).

The transitive subgroups of S4 (transitive means one of the group elements takes a given
a to a given b) are

S4: order 24
A4: order 12 and consists of all even permutations
D4: order 8 and is conjugate to 〈(1, 2, 3, 4) , (1, 3)〉
Z4: 〈(1, 2, 3, 4)〉 and its conjugates.
Z2 × Z2: 〈(1, 2) (3, 4) , (1, 3) (2, 4) , (1, 4) (2, 3)〉 = 〈(1, 2) (3, 4) , (1, 3) (2, 4)〉
We have 4-cycle (which is an even permutation), so A4 and Z2 × Z2 are out.
We have a (1, 2) (3, 4) type element (this is true for all of the above).
We have a 2-cycle. This rules out A4, Z4, and Z2 × Z2.
The possibilities are D4 or S4.
So we factor modulo more primes. If we get an irreducible cubic for some prime p, there

must be a 3-cycle in Gal (K,Q), so the Galois group is S4. In fact, this will never happen.
Trying to compute the Galois group over Q through finite fields, you never know you are

done unless you get the whole symmetric group. Other partial information (like knowing the
degree of the splitting field ) can complete the calculation. But we know from the previous
calculation that the order of the Galois group is 8, so it must be D4.

Example 9. Complex conjugation is an element of the Galois group over Q. Take an
irreducible polynomial of degree 5 with three real roots. For any irreducible quintic, the
Galois group has an element of order 5, hence a 5-cycle, since 5 is prime. Because the
irreducible polynomial has three real roots, complex conjugation is a transposition. These
two permutations generate S5, so the Galois group is S5. (Uses result that a p-cycle and a
2-cycle generate Sp for p prime.)
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