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The coefficients of a polynomial are symmetric functions of the roots {; }:
f(l') =" — Slxn_l + 82$n_2 4ot (_1)718“’

where s; = >, S2 = Y a5, ..., S, = Q7 - - . Every symmetric poly-
nomial in {a;} is a polynomial in {s;}.

An element that is algebraic over K is separable over K if its minimal
polynomial has distinct roots. Since a root of f is a multiple root if and only if
it is also a root of f’. For f irreducible, this implies f’ = 0. Separability holds,
in particular, for all elements algebraic over a field of characteristic 0 and over
a finite field. An extension is separable if every element is separable, which
holds if the elements of a generating set are separable. A finite extension L
of K is separable if and only if there are [L : K] isomorphisms of L into the
algebraic closure K that fix K.

Theorem of the Primitive Element. If a finite extension L of K is
separable, it is simple, i.e. L = K(«).

An algebraic extension L of K is normal if the minimal polynomial over
K of every element of L splits over L. An extension is normal if and only if
it is the splitting field of some set of polynomials.

An algebraic extension L of K is Galois if it is a separable, normal exten-
sion of K. Its group of automorphisms is the Galois group of L over K. A
finite Galois group acts transitively on a generator of the extension. Thus,
the Galois group may be realized naturally as a transitive subgroup of Siz.xj.

Fundamental Theorem of Galois Theory (for finite extensions). Let L
be a finite, Galois extension of K with Galois group GG. Then there is a one-
one correspondence between subgroups of G and subfields of L containing
K. The subgroup H corresponds to the field L of elements of L fixed by
H. The intermediate subfield M corresponds to the Galois group of L over
M.

H is a normal subgroup if and only if L is a normal extension of K and
the quotient group is then the Galois group.



My notes from the Graduate Student Seminar from a couple years back
(http://faculty.tcu.edu/richardson/Prelims/GeorgeFields.pdf ) list the tran-
sitive subgroups of Sy, go into more detail on polynomials and field extensions
than I do here, and have some additional examples.

The Galois group may be expressed in abstractly in terms of known groups
or by giving generators and relations or concretely as a subgroup of a per-
mutation group. To compute a Galois group of a polynomial, first compute
the degree of its splitting field. Then determine how the Galois group acts
on the roots of this polynomial.

Example 1: Finite Fields. Write finite fields as F« (not Z,, ...). Note that
IF,x is the set of roots of P By counting, we see that the vector space
dimension of F .« over F,x is n. The Galois group is cyclic and generated

by the Frobenius automorphism = 2 (just think about the solutions to
dk
" —x=0).

Example 2: What is the Galois group over QQ of the splitting field of
(:1:'2 — 2) (332 — 3)?

The splitting field is Q(v/2, v/3).

Exercise: For nonzero integers m and n, Q(y/m) = Q(y/n) if and only if
mn is a perfect square.

Thus, [Q(v/2,v/3) : Q] = 4. The Galois group G must be cyclic of order
4 or the Klein 4-group C5 x (5. The former has only one subgroup of order
2, but the splitting field contains Q(v/2), Q(v/3), and Q(v/6), so G must be
the Klein 4-group.

The four elements of GG are the automorphisms taking V2 — +v/2 and
V3 — £v/3 (independently). This shows /2 4 v/3 has four distinct conju-

sates, hence Q(v2,v/3) = Q(v2 + V3).
Example 3: What is the Galois group over Q of the splitting field of
(2~ 2) («* - 3) (> — 5)7

Is Q(v/5) contained in Q(v/2,v/3)? If so, it would have to be one of
Q(v2), Q(v3), Q(+v/6), which it isn’t. Thus, the splitting field has degree 8
over Q. An automorphism is determined by the images of v/2, v/3, and v/5.
All 8 possibilities must correspond to automorphisms and it follows that the
Galois group is Cy x Cy x (.


http://faculty.tcu.edu/richardson/Prelims/GeorgeFields.pdf

Example 4: Cyclotomic Extensions of Q. The nth cyclotomic polynomial
®,, is the monic polynomial of degree ¢(n) whose roots are the primitive nth
roots of unity. It may be computed by dividing 2™ — 1 by the cyclotomic
polynomials for the proper factors of n, so, inductively, is a monic polynomial
with integral coefficients.

Over Q, if @, were reducible, there would be a primitive nth root of
unity ¢ and a prime p not dividing n such that ¢ and (? are roots of different
irreducible factors of ®,, say f and g, respectively. Because ( is a root is
of g(aP), it is divisible by f(x). However, g(z?) = [g(x)]? (mod p), so that
f(z) and g(x) would have a common root over F,. However, the derivative
of 2™ — 1 shows that, over F,,, the nth roots of unity are distinct.

We see that primitive nth roots of unity are conjugate. For a primitive
nth root of unity ¢ and a an integer relatively prime to n, there is an au-
tomorphism taking ¢ to (¢, which in turn determines the automorphism. It
follows that the Galois group is isomorphic to (Z/(nZ))".

Remark. The Kronecker-Weber theorem shows that every abelian extension
of Q is contained in a cyclotomic extension.

Example 5: Find the Galois group of the splitting field of 2° — 6 over Q.

The polynomial is irreducible by Eisenstein’s criterion.

The roots are v6¢*, k = 0,1,2,3,4, where ¢ = ¢*/5. The splitting
field is Q(v/6,¢). Because [Q(v/6) : Q] = 5 and [Q(C) : Q] = 4, we have
[Q(v/6,¢) : Q] = 20. The Galois group has a normal subgroup of order
5, the Galois group of Q(v/6,¢) over Q(¢) with generator o taking ¢ + (,
v/6 +— /6. It also has a cyclic subgroup of order 4, the Galois group of
Q(V/6,¢) over Q(+/6) with generator 7 taking v/6 — v/6 and ¢ — (2. We
know 77 'o7T = oF for some k = 1,2,3,4 and hence that it fixes (. It maps
v/6 to v/6 (3, so equals 0.

We can represent the Galois group as a subgroup of S5 as

((1,2,3,4,5),(1,2,4,3)).

Example 6: Find the Galois group of the splitting field of z* — /2 over
Q(v2).

If we knew that Z [\/5] were a principal ideal domain, we could conclude
z* — /2 is irreducible by a straightforward generalization of Eisenstein’s



criterion. Not assuming this, observe that
A g <m4—\/§> <m4+\/§>
is irreducible over Q by Eisenstein’s criterion. Thus,
8 =[Q(V2): Q] = [Q(V2) : Q(v2)]- [Q(V2) : Q] = 2[Q(V2 : Q(V2)].

Therefore, [Q(¥/2) : Q(v/2)] = 4, 2* — /2 is irreducible over Q(v/2), and the
Galois group is a transitive subgroup of S;. We obtain the splitting field by
adjoining the 4th roots of unity, i.e. by adjoining ¢, which clearly has degree
2 over the real field Q(+v/2). Thus, the spitting field has degree 8 over Q(v/2).
There are three conjugate Sylow subgroups of S;. They are isomorphic to
the dihedral group Ds.

Explicitly, the Galois group is generated by the automorphism o of order
4 that fixes i and takes v/2 to v/2i and by complex conjugation, denoted say
by 7. The orders are easily checked, as is the relation 7 lo7 = o3.
Example 7: Find the Galois group of the splitting field of 2% — /2 over
Q).

As in Example 6, the polynomial is irreducible over Q(v/2), and hence
[Q(V/2) : Q(v/2)] = 8. We obtain the splitting field by adjoining the 8th
roots of unity.

None of the primitive 8th roots of unity lie in Q( ¥/2), so the 8th cy-
clotomic polynomial (®,(x) = x* + 1) is either irreducible or factors into
irreducible quadratics over Q( 1\6/5).Thus, the Galois group has order 16
or 32. More generally, if the Galois extension L of K is the composi-
tum of M; and M,, with M, Galois over K, then there is an injection of
Gal(L, M) — Gal(Ms, K) so that |Gal(L, My)| divides |Gal(Ms, K)|.

Two ways to see the degree is 2:

et 1= (22 +1)? =222 = (2% + V2 + 1)(2® — V22 + 1),
e*™/8 = cos(2mi/8) + i sin(27i/8) = % +1 %

Therefore, the Galois group is isomorphic to the dihedral group Dig, with

details very similar to Example 6.



Example 8: The discriminant of a polynomial with roots o, ..., a, is de-

fined to be

[T (i = ay)?.

i<j
Note that it is a test, even without the square, for whether the «; are distinct.
With the square, it is a symmetric polynomial in the «a;, so is a polynomial
in the coefficients of the monic polynomial with roots o, ..., a,.

Theorem. Suppose that aq,...,a, are the roots an a separable, irreducible
polynomial over K. The discriminant is the square of an element of K if
and only if the Galois group of K(aq,...,a,) over K is contained in the
alternating group A,,.

Proof. It is easy to see that a transposition changes the sign of

H(Oﬁ—%‘)-

1<j

This implies that A, fixes this product, whereas any odd permutation changes
its sign.

Example 9: Let Q(«) over Q have Galois group G = Zs x Zsz. Then G
acts on « and its conjugates as a permutation group. Determine all possible
subgroups of the symmetric group Sy that could correspond to this action.

An element of order 3 in .S, is a product of 3-cycles. Because the Galois
group has order 9 and is transitive on the 9 conjugates of «, it follows that
every nontrivial element of GG is the product of three 3-cycles. We may label
the conjugates so that one such element is 0 = (1,2,3)(4,5,6)(7,8,9). The
element 7 of GG that takes root 1 to root 4, must take root 4 to one of root 7, 8,
or 9, or else o*7 would fix one of roots 1 to 6 for some k = 1 or 2. Relabeling
roots 7, 8, 9 if necessary, we may assume 7 = (1,4,7)(2,...)(3,...). From
7o = o7, look at the images of roots 1, then 2, then 4, and finally 5, we
conclude 7 = (1,4,7)(2,5,8)(3,6,9). The only choices we made were in
labelling the roots. Thus, any representation of the Galois group would
simply be relabeling the roots, hence is a conjugate of (o, 7) by an element
of S,.



