Galois Theory TCU Graduate Student Seminar George Gilbert October 2015

The coefficients of a polynomial are symmetric functions of the roots $\{\alpha_i\}$:

$$f(x) = x^{n} - s_{1}x^{n-1} + s_{2}x^{n-2} + \dots + (-1)^{n}s_{n},$$

where $s_1 = \sum \alpha_i, s_2 = \sum \alpha_i \alpha_j, \ldots, s_n = \alpha_1 \cdots \alpha_n$. Every symmetric polynomial in $\{\alpha_i\}$ is a polynomial in $\{s_i\}$.

An element that is algebraic over K is *separable* over K if its minimal polynomial has distinct roots. Since a root of f is a multiple root if and only if it is also a root of f'. For f irreducible, this implies f' = 0. Separability holds, in particular, for all elements algebraic over a field of characteristic 0 and over a finite field. An extension is *separable* if every element is separable, which holds if the elements of a generating set are separable. A finite extension Lof K is separable if and only if there are [L:K] isomorphisms of L into the algebraic closure \overline{K} that fix K.

Theorem of the Primitive Element. If a finite extension L of K is separable, it is simple, i.e. $L = K(\alpha)$.

An algebraic extension L of K is *normal* if the minimal polynomial over K of every element of L splits over L. An extension is normal if and only if it is the splitting field of some set of polynomials.

An algebraic extension L of K is *Galois* if it is a separable, normal extension of K. Its group of automorphisms is the *Galois group* of L over K. A finite Galois group acts transitively on a generator of the extension. Thus, the Galois group may be realized naturally as a transitive subgroup of $S_{[L:K]}$.

Fundamental Theorem of Galois Theory (for finite extensions). Let L be a finite, Galois extension of K with Galois group G. Then there is a oneone correspondence between subgroups of G and subfields of L containing K. The subgroup H corresponds to the field L^H of elements of L fixed by H. The intermediate subfield M corresponds to the Galois group of L over M.

H is a normal subgroup if and only if L^H is a normal extension of K and the quotient group is then the Galois group.

My notes from the Graduate Student Seminar from a couple years back (http://faculty.tcu.edu/richardson/Prelims/GeorgeFields.pdf) list the transitive subgroups of S_4 , go into more detail on polynomials and field extensions than I do here, and have some additional examples.

The Galois group may be expressed in abstractly in terms of known groups or by giving generators and relations or concretely as a subgroup of a permutation group. To compute a Galois group of a polynomial, first compute the degree of its splitting field. Then determine how the Galois group acts on the roots of this polynomial.

Example 1: Finite Fields. Write finite fields as \mathbb{F}_{p^k} (not \mathbb{Z}_p, \ldots). Note that \mathbb{F}_{p^k} is the set of roots of $x^{p^k} - x$. By counting, we see that the vector space dimension of $\mathbb{F}_{p^{n_k}}$ over \mathbb{F}_{p^k} is n. The Galois group is cyclic and generated by the Frobenius automorphism $x \mapsto x^{p^k}$ (just think about the solutions to $x^{p^{d_k}} - x = 0$).

Example 2: What is the Galois group over \mathbb{Q} of the splitting field of

$$(x^2-2)(x^2-3)?$$

The splitting field is $\mathbb{Q}(\sqrt{2},\sqrt{3})$.

Exercise: For nonzero integers m and n, $\mathbb{Q}(\sqrt{m}) = \mathbb{Q}(\sqrt{n})$ if and only if mn is a perfect square.

Thus, $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}] = 4$. The Galois group G must be cyclic of order 4 or the Klein 4-group $C_2 \times C_2$. The former has only one subgroup of order 2, but the splitting field contains $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$, and $\mathbb{Q}(\sqrt{6})$, so G must be the Klein 4-group.

The four elements of G are the automorphisms taking $\sqrt{2} \mapsto \pm \sqrt{2}$ and $\sqrt{3} \mapsto \pm \sqrt{3}$ (independently). This shows $\sqrt{2} + \sqrt{3}$ has four distinct conjugates, hence $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$.

Example 3: What is the Galois group over \mathbb{Q} of the splitting field of

$$(x^2-2)(x^2-3)(x^2-5)?$$

Is $\mathbb{Q}(\sqrt{5})$ contained in $\mathbb{Q}(\sqrt{2},\sqrt{3})$? If so, it would have to be one of $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$, $\mathbb{Q}(\sqrt{6})$, which it isn't. Thus, the splitting field has degree 8 over \mathbb{Q} . An automorphism is determined by the images of $\sqrt{2}$, $\sqrt{3}$, and $\sqrt{5}$. All 8 possibilities must correspond to automorphisms and it follows that the Galois group is $C_2 \times C_2 \times C_2$.

Example 4: Cyclotomic Extensions of \mathbb{Q} . The *n*th cyclotomic polynomial Φ_n is the monic polynomial of degree $\phi(n)$ whose roots are the primitive *n*th roots of unity. It may be computed by dividing $x^n - 1$ by the cyclotomic polynomials for the proper factors of n, so, inductively, is a monic polynomial with integral coefficients.

Over \mathbb{Q} , if Φ_n were reducible, there would be a primitive *n*th root of unity ζ and a prime *p* not dividing *n* such that ζ and ζ^p are roots of different irreducible factors of Φ_n , say *f* and *g*, respectively. Because ζ is a root is of $g(x^p)$, it is divisible by f(x). However, $g(x^p) \equiv [g(x)]^p \pmod{p}$, so that f(x) and g(x) would have a common root over \mathbb{F}_p . However, the derivative of $x^n - 1$ shows that, over \mathbb{F}_p , the *n*th roots of unity are distinct.

We see that primitive *n*th roots of unity are conjugate. For a primitive *n*th root of unity ζ and *a* an integer relatively prime to *n*, there is an automorphism taking ζ to ζ^a , which in turn determines the automorphism. It follows that the Galois group is isomorphic to $(\mathbb{Z}/(n\mathbb{Z}))^*$.

Remark. The Kronecker-Weber theorem shows that every abelian extension of \mathbb{Q} is contained in a cyclotomic extension.

Example 5: Find the Galois group of the splitting field of $x^5 - 6$ over \mathbb{Q} . The polynomial is irreducible by Eisenstein's criterion.

The roots are $\sqrt[5]{6}\zeta^k$, k = 0, 1, 2, 3, 4, where $\zeta = e^{2\pi i/5}$. The splitting field is $\mathbb{Q}(\sqrt[5]{6}, \zeta)$. Because $[\mathbb{Q}(\sqrt[5]{6}) : \mathbb{Q}] = 5$ and $[\mathbb{Q}(\zeta) : \mathbb{Q}] = 4$, we have $[\mathbb{Q}(\sqrt[5]{6}, \zeta) : \mathbb{Q}] = 20$. The Galois group has a normal subgroup of order 5, the Galois group of $\mathbb{Q}(\sqrt[5]{6}, \zeta)$ over $\mathbb{Q}(\zeta)$ with generator σ taking $\zeta \mapsto \zeta$, $\sqrt[5]{6} \mapsto \sqrt[5]{6}\zeta$. It also has a cyclic subgroup of order 4, the Galois group of $\mathbb{Q}(\sqrt[5]{6}, \zeta)$ over $\mathbb{Q}(\sqrt[5]{6})$ with generator τ taking $\sqrt[5]{6} \mapsto \sqrt[5]{6}$ and $\zeta \mapsto \zeta^2$. We know $\tau^{-1}\sigma\tau = \sigma^k$ for some k = 1, 2, 3, 4 and hence that it fixes ζ . It maps $\sqrt[5]{6}$ to $\sqrt[5]{6}\zeta^3$, so equals σ^3 .

We can represent the Galois group as a subgroup of S_5 as

$$\langle (1,2,3,4,5), (1,2,4,3) \rangle$$

Example 6: Find the Galois group of the splitting field of $x^4 - \sqrt{2}$ over $\mathbb{Q}(\sqrt{2})$.

If we knew that $Z[\sqrt{2}]$ were a principal ideal domain, we could conclude $x^4 - \sqrt{2}$ is irreducible by a straightforward generalization of Eisenstein's

criterion. Not assuming this, observe that

$$x^{8} - 2 = \left(x^{4} - \sqrt{2}\right)\left(x^{4} + \sqrt{2}\right)$$

is irreducible over \mathbb{Q} by Eisenstein's criterion. Thus,

$$8 = [\mathbb{Q}(\sqrt[8]{2}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt[8]{2}) : \mathbb{Q}(\sqrt{2})] \cdot [\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2 [\mathbb{Q}(\sqrt[8]{2} : \mathbb{Q}(\sqrt{2})].$$

Therefore, $[\mathbb{Q}(\sqrt[8]{2}):\mathbb{Q}(\sqrt{2})] = 4$, $x^4 - \sqrt{2}$ is irreducible over $\mathbb{Q}(\sqrt{2})$, and the Galois group is a transitive subgroup of S_4 . We obtain the splitting field by adjoining the 4th roots of unity, i.e. by adjoining *i*, which clearly has degree 2 over the real field $\mathbb{Q}(\sqrt[8]{2})$. Thus, the spitting field has degree 8 over $\mathbb{Q}(\sqrt{2})$. There are three conjugate Sylow subgroups of S_4 . They are isomorphic to the dihedral group D_8 .

Explicitly, the Galois group is generated by the automorphism σ of order 4 that fixes *i* and takes $\sqrt[8]{2}$ to $\sqrt[8]{2}i$ and by complex conjugation, denoted say by τ . The orders are easily checked, as is the relation $\tau^{-1}\sigma\tau = \sigma^3$.

Example 7: Find the Galois group of the splitting field of $x^8 - \sqrt{2}$ over $\mathbb{Q}(\sqrt{2})$.

As in Example 6, the polynomial is irreducible over $\mathbb{Q}(\sqrt{2})$, and hence $[\mathbb{Q}(\sqrt[16]{2}) : \mathbb{Q}(\sqrt{2})] = 8$. We obtain the splitting field by adjoining the 8th roots of unity.

None of the primitive 8th roots of unity lie in $\mathbb{Q}(\sqrt[16]{2})$, so the 8th cyclotomic polynomial $(\Phi_4(x) = x^4 + 1)$ is either irreducible or factors into irreducible quadratics over $\mathbb{Q}(\sqrt[16]{2})$. Thus, the Galois group has order 16 or 32. More generally, if the Galois extension L of K is the compositum of M_1 and M_2 , with M_2 Galois over K, then there is an injection of $\operatorname{Gal}(L, M_1) \hookrightarrow \operatorname{Gal}(M_2, K)$ so that $|\operatorname{Gal}(L, M_1)|$ divides $|\operatorname{Gal}(M_2, K)|$.

Two ways to see the degree is 2:

$$x^{4} + 1 = (x^{2} + 1)^{2} - 2x^{2} = (x^{2} + \sqrt{2}x + 1)(x^{2} - \sqrt{2}x + 1),$$
$$e^{2\pi i/8} = \cos(2\pi i/8) + i\sin(2\pi i/8) = \frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}.$$

Therefore, the Galois group is isomorphic to the dihedral group D_{16} , with details very similar to Example 6.

Example 8: The discriminant of a polynomial with roots $\alpha_1, \ldots, \alpha_n$ is defined to be

$$\prod_{i < j} \left(\alpha_i - \alpha_j \right)^2$$

•

Note that it is a test, even without the square, for whether the α_i are distinct. With the square, it is a symmetric polynomial in the α_i , so is a polynomial in the coefficients of the monic polynomial with roots $\alpha_1, \ldots, \alpha_n$.

Theorem. Suppose that $\alpha_1, \ldots, \alpha_n$ are the roots an a separable, irreducible polynomial over K. The discriminant is the square of an element of K if and only if the Galois group of $K(\alpha_1, \ldots, \alpha_n)$ over K is contained in the alternating group A_n .

Proof. It is easy to see that a transposition changes the sign of

$$\prod_{i < j} \left(\alpha_i - \alpha_j \right)$$

This implies that A_n fixes this product, whereas any odd permutation changes its sign.

Example 9: Let $\mathbb{Q}(\alpha)$ over \mathbb{Q} have Galois group $G \cong \mathbb{Z}_3 \times \mathbb{Z}_3$. Then G acts on α and its conjugates as a permutation group. Determine all possible subgroups of the symmetric group S_9 that could correspond to this action.

An element of order 3 in S_n is a product of 3-cycles. Because the Galois group has order 9 and is transitive on the 9 conjugates of α , it follows that every nontrivial element of G is the product of three 3-cycles. We may label the conjugates so that one such element is $\sigma = (1, 2, 3)(4, 5, 6)(7, 8, 9)$. The element τ of G that takes root 1 to root 4, must take root 4 to one of root 7, 8, or 9, or else $\sigma^k \tau$ would fix one of roots 1 to 6 for some k = 1 or 2. Relabeling roots 7, 8, 9 if necessary, we may assume $\tau = (1, 4, 7)(2, \ldots)(3, \ldots)$. From $\tau \sigma = \sigma \tau$, look at the images of roots 1, then 2, then 4, and finally 5, we conclude $\tau = (1, 4, 7)(2, 5, 8)(3, 6, 9)$. The only choices we made were in labelling the roots. Thus, any representation of the Galois group would simply be relabeling the roots, hence is a conjugate of $\langle \sigma, \tau \rangle$ by an element of S_n .