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The coefficients of a polynomial are symmetric functions of the roots {αi}:

f(x) = xn − s1xn−1 + s2x
n−2 + · · ·+ (−1)nsn,

where s1 =
∑
αi, s2 =

∑
αiαj, . . . , sn = α1 · · ·αn. Every symmetric poly-

nomial in {αi} is a polynomial in {si}.
An element that is algebraic over K is separable over K if its minimal

polynomial has distinct roots. Since a root of f is a multiple root if and only if
it is also a root of f ′. For f irreducible, this implies f ′ = 0. Separability holds,
in particular, for all elements algebraic over a field of characteristic 0 and over
a finite field. An extension is separable if every element is separable, which
holds if the elements of a generating set are separable. A finite extension L
of K is separable if and only if there are [L : K] isomorphisms of L into the
algebraic closure K̄ that fix K.

Theorem of the Primitive Element. If a finite extension L of K is
separable, it is simple, i.e. L = K(α).

An algebraic extension L of K is normal if the minimal polynomial over
K of every element of L splits over L. An extension is normal if and only if
it is the splitting field of some set of polynomials.

An algebraic extension L of K is Galois if it is a separable, normal exten-
sion of K. Its group of automorphisms is the Galois group of L over K. A
finite Galois group acts transitively on a generator of the extension. Thus,
the Galois group may be realized naturally as a transitive subgroup of S[L:K].

Fundamental Theorem of Galois Theory (for finite extensions). Let L
be a finite, Galois extension of K with Galois group G. Then there is a one-
one correspondence between subgroups of G and subfields of L containing
K. The subgroup H corresponds to the field LH of elements of L fixed by
H. The intermediate subfield M corresponds to the Galois group of L over
M .

H is a normal subgroup if and only if LH is a normal extension of K and
the quotient group is then the Galois group.
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My notes from the Graduate Student Seminar from a couple years back
(http://faculty.tcu.edu/richardson/Prelims/GeorgeFields.pdf ) list the tran-
sitive subgroups of S4, go into more detail on polynomials and field extensions
than I do here, and have some additional examples.

The Galois group may be expressed in abstractly in terms of known groups
or by giving generators and relations or concretely as a subgroup of a per-
mutation group. To compute a Galois group of a polynomial, first compute
the degree of its splitting field. Then determine how the Galois group acts
on the roots of this polynomial.

Example 1: Finite Fields. Write finite fields as Fpk (not Zp, . . .). Note that

Fpk is the set of roots of xp
k − x. By counting, we see that the vector space

dimension of Fpnk over Fpk is n. The Galois group is cyclic and generated

by the Frobenius automorphism x 7→ xp
k

(just think about the solutions to
xp

dk − x = 0).

Example 2: What is the Galois group over Q of the splitting field of(
x2 − 2

) (
x2 − 3

)
?

The splitting field is Q(
√

2,
√

3).
Exercise: For nonzero integers m and n, Q(

√
m) = Q(

√
n) if and only if

mn is a perfect square.
Thus, [Q(

√
2,
√

3) : Q] = 4. The Galois group G must be cyclic of order
4 or the Klein 4-group C2 × C2. The former has only one subgroup of order
2, but the splitting field contains Q(

√
2), Q(

√
3), and Q(

√
6), so G must be

the Klein 4-group.
The four elements of G are the automorphisms taking

√
2 7→ ±

√
2 and√

3 7→ ±
√

3 (independently). This shows
√

2 +
√

3 has four distinct conju-
gates, hence Q(

√
2,
√

3) = Q(
√

2 +
√

3).

Example 3: What is the Galois group over Q of the splitting field of(
x2 − 2

) (
x2 − 3

) (
x2 − 5

)
?

Is Q(
√

5) contained in Q(
√

2,
√

3)? If so, it would have to be one of
Q(
√

2), Q(
√

3), Q(
√

6), which it isn’t. Thus, the splitting field has degree 8
over Q. An automorphism is determined by the images of

√
2,
√

3, and
√

5.
All 8 possibilities must correspond to automorphisms and it follows that the
Galois group is C2 × C2 × C2.
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Example 4: Cyclotomic Extensions of Q. The nth cyclotomic polynomial
Φn is the monic polynomial of degree φ(n) whose roots are the primitive nth
roots of unity. It may be computed by dividing xn − 1 by the cyclotomic
polynomials for the proper factors of n, so, inductively, is a monic polynomial
with integral coefficients.

Over Q, if Φn were reducible, there would be a primitive nth root of
unity ζ and a prime p not dividing n such that ζ and ζp are roots of different
irreducible factors of Φn, say f and g, respectively. Because ζ is a root is
of g(xp), it is divisible by f(x). However, g(xp) ≡ [g(x)]p (mod p), so that
f(x) and g(x) would have a common root over Fp. However, the derivative
of xn − 1 shows that, over Fp, the nth roots of unity are distinct.

We see that primitive nth roots of unity are conjugate. For a primitive
nth root of unity ζ and a an integer relatively prime to n, there is an au-
tomorphism taking ζ to ζa, which in turn determines the automorphism. It
follows that the Galois group is isomorphic to (Z/(nZ))∗.

Remark. The Kronecker-Weber theorem shows that every abelian extension
of Q is contained in a cyclotomic extension.

Example 5: Find the Galois group of the splitting field of x5 − 6 over Q.
The polynomial is irreducible by Eisenstein’s criterion.
The roots are 5

√
6 ζk, k = 0, 1, 2, 3, 4, where ζ = e2πi/5. The splitting

field is Q( 5
√

6, ζ). Because [Q( 5
√

6) : Q] = 5 and [Q(ζ) : Q] = 4, we have
[Q( 5
√

6, ζ) : Q] = 20. The Galois group has a normal subgroup of order
5, the Galois group of Q( 5

√
6, ζ) over Q(ζ) with generator σ taking ζ 7→ ζ,

5
√

6 7→ 5
√

6 ζ. It also has a cyclic subgroup of order 4, the Galois group of
Q( 5
√

6, ζ) over Q( 5
√

6) with generator τ taking 5
√

6 7→ 5
√

6 and ζ 7→ ζ2. We
know τ−1στ = σk for some k = 1, 2, 3, 4 and hence that it fixes ζ. It maps
5
√

6 to 5
√

6 ζ3, so equals σ3.
We can represent the Galois group as a subgroup of S5 as

〈(1, 2, 3, 4, 5), (1, 2, 4, 3)〉.

Example 6: Find the Galois group of the splitting field of x4 −
√

2 over
Q(
√

2).
If we knew that Z[

√
2] were a principal ideal domain, we could conclude

x4 −
√

2 is irreducible by a straightforward generalization of Eisenstein’s
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criterion. Not assuming this, observe that

x8 − 2 =
(
x4 −

√
2
)(

x4 +
√

2
)

is irreducible over Q by Eisenstein’s criterion. Thus,

8 = [Q(
8
√

2) : Q] = [Q(
8
√

2) : Q(
√

2)] · [Q(
√

2) : Q] = 2 [Q(
8
√

2 : Q(
√

2)].

Therefore, [Q( 8
√

2) : Q(
√

2)] = 4, x4−
√

2 is irreducible over Q(
√

2), and the
Galois group is a transitive subgroup of S4. We obtain the splitting field by
adjoining the 4th roots of unity, i.e. by adjoining i, which clearly has degree
2 over the real field Q( 8

√
2). Thus, the spitting field has degree 8 over Q(

√
2).

There are three conjugate Sylow subgroups of S4. They are isomorphic to
the dihedral group D8.

Explicitly, the Galois group is generated by the automorphism σ of order
4 that fixes i and takes 8

√
2 to 8
√

2i and by complex conjugation, denoted say
by τ . The orders are easily checked, as is the relation τ−1στ = σ3.

Example 7: Find the Galois group of the splitting field of x8 −
√

2 over
Q(
√

2).
As in Example 6, the polynomial is irreducible over Q(

√
2), and hence

[Q( 16
√

2) : Q(
√

2)] = 8. We obtain the splitting field by adjoining the 8th
roots of unity.

None of the primitive 8th roots of unity lie in Q( 16
√

2), so the 8th cy-
clotomic polynomial (Φ4(x) = x4 + 1) is either irreducible or factors into
irreducible quadratics over Q( 16

√
2).Thus, the Galois group has order 16

or 32. More generally, if the Galois extension L of K is the composi-
tum of M1 and M2, with M2 Galois over K, then there is an injection of
Gal(L,M1) ↪→ Gal(M2, K) so that |Gal(L,M1)| divides |Gal(M2, K)|.

Two ways to see the degree is 2:

x4 + 1 = (x2 + 1)2 − 2x2 = (x2 +
√

2x+ 1)(x2 −
√

2x+ 1),

e2πi/8 = cos(2πi/8) + i sin(2πi/8) =
1√
2

+ i
1√
2
.

Therefore, the Galois group is isomorphic to the dihedral group D16, with
details very similar to Example 6.
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Example 8: The discriminant of a polynomial with roots α1, . . . , αn is de-
fined to be ∏

i<j

(αi − αj)2 .

Note that it is a test, even without the square, for whether the αi are distinct.
With the square, it is a symmetric polynomial in the αi, so is a polynomial
in the coefficients of the monic polynomial with roots α1, . . . , αn.

Theorem. Suppose that α1, . . . , αn are the roots an a separable, irreducible
polynomial over K. The discriminant is the square of an element of K if
and only if the Galois group of K(α1, . . . , αn) over K is contained in the
alternating group An.

Proof. It is easy to see that a transposition changes the sign of∏
i<j

(αi − αj) .

This implies thatAn fixes this product, whereas any odd permutation changes
its sign.

Example 9: Let Q(α) over Q have Galois group G ∼= Z3 × Z3. Then G
acts on α and its conjugates as a permutation group. Determine all possible
subgroups of the symmetric group S9 that could correspond to this action.

An element of order 3 in Sn is a product of 3-cycles. Because the Galois
group has order 9 and is transitive on the 9 conjugates of α, it follows that
every nontrivial element of G is the product of three 3-cycles. We may label
the conjugates so that one such element is σ = (1, 2, 3)(4, 5, 6)(7, 8, 9). The
element τ of G that takes root 1 to root 4, must take root 4 to one of root 7, 8,
or 9, or else σkτ would fix one of roots 1 to 6 for some k = 1 or 2. Relabeling
roots 7, 8, 9 if necessary, we may assume τ = (1, 4, 7)(2, . . .)(3, . . .). From
τσ = στ , look at the images of roots 1, then 2, then 4, and finally 5, we
conclude τ = (1, 4, 7)(2, 5, 8)(3, 6, 9). The only choices we made were in
labelling the roots. Thus, any representation of the Galois group would
simply be relabeling the roots, hence is a conjugate of 〈σ, τ〉 by an element
of Sn.
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