1. Consider the function $u: \mathbb{C}-\{0\} \rightarrow \mathbb{R}$ given by $u(x+i y)=\frac{2 y}{x^{2}+y^{2}}$.
(a) Show by a direct calculation that u is harmonic.
(b) Find explicitly a harmonic function $v: \mathbb{C}-\{0\} \rightarrow \mathbb{R}$ for which $f=u+i v$ is holomorphic.
2. Let $p(z)=z^{5}+5 z^{3}-100$. Prove that $p(z)$ has exactly five zeros (counting multiplicity) and all lie in the annulus $\{z \in \mathbb{C}: 2<|z|<4\}$.
3. Find the radius of convergence of the Taylor series at $z=0$ for the function $g(z)=\frac{1}{\sin (z)-2}$.
4. (a) Find all possible entire functions f such that $\left|f(z)-e^{z}\right|<2021$ for all z in \mathbb{C}.
(b) Prove that a sequence of entire functions that converges uniformly must converge to an entire function.
5. Find a conformal map of the infinite strip $|\operatorname{Im} z|<1$ onto the unit disk $|z|<1$.
6. Use a contour integral to compute $\int_{-\infty}^{\infty} \frac{\cos (\alpha x) d x}{x^{4}+1}$, where $\alpha>0$.
7. If f is entire and $\lim _{|z| \rightarrow \infty} \frac{|f(z)|}{|z|^{3}}$ is a strictly positive number, show that $f(z)$ is a polynomial of degree exactly three.
8. For $a \in \mathbb{C}$ with $|a| \neq 1$, consider the map $f(z)=\frac{z-a}{1-\bar{a} z}$.
(a) Show that $f(z)$ is an invertible map of the extended complex plane.
(b) Show that $f(z)$ takes the unit circle to itself.
(c) Show that $f(z)$ takes the unit disk to itself if and only if $|a|<1$.
