COMPLEX ANALYSIS PRELIMINARY EXAMINATION AUGUST 16, 2013

- (1) An entire function f = u + iv with u, v real-valued satisfies $u_x v_y u_y v_x = 1$ for all values of z = x + iy in the complex plane. Prove that f has the form f(z) = az + b, where a and b are constants and |a| = 1.
- (2) Find $\int_{\Delta} (2z^4 z \cos(1/z)) dz$, where Δ is the unit circle centered at 0, oriented counterclockwise.
- (3) Find $\int_0^\infty \frac{3x^2}{(x^2+4)^2} dx$.
- (4) Find the Laurent expansion of the function $f(z) = \frac{2}{z^2 3z + 2}$ valid for $\sqrt{2} < |z + i| < \sqrt{5}$.
- (5) Suppose that f and g are entire functions, that $|f(z)| \leq |g(z)|$ for all z, and that $f(1) = g(1) \neq 0$. Prove that f(z) = g(z) for all z.
- (6) Suppose that f is a holomorphic function on the open disk of radius 3 centered at 0, and suppose that f maps the closed annulus $\{z : 1 \le |z| \le 2\}$ into the open unit disk. Prove that the restriction of f to $D(0,2) = \{z : |z| < 2\}$ has exactly one fixed point.
- (7) Use the argument principle to prove Rouche's Theorem.
- (8) Find an orientation-preserving conformal map from the open unit disk D to $\{x+iy \in D : y < 0 \text{ and } x < 0\}$.