Complex Analysis Preliminary Exam

January 13, 2024

Justification is required for all statements.

1. Find all Laurent series expansions of $\frac{2 z+3}{z+1}$ centered at $z=1$, and determine their open annuli of convergence.
2. Find all possible holomorphic functions ϕ on \mathbb{C} such that $\left(\phi\left(e^{i / n}\right)\right)^{2}=5 \phi\left(e^{i / n}\right)$ for all positive integers n.
3. Find a conformal map of the set $S=\{z \in \mathbb{C}: \operatorname{Im} z<0\}$ to the set $T=\{z \in \mathbb{C}:|z|<1$ and $\operatorname{Re} z>0\}$. (Supply only brief justification that your map is conformal.)
4. Calculate

$$
\int_{0}^{\infty} \frac{d x}{\left(a+b x^{2}\right)^{2}}, a, b>0
$$

5. An entire function $f=u+i v$ with u, v real-valued satisfies $u_{x}+v_{y}=0$ for all values of $z=x+i y$ in the complex plane. Prove that f has the form $f(z)=a z+b$, where a and b are constants and $\operatorname{Re}(a)=0$.
6. Compute $\int_{0}^{2 \pi} \exp (\exp (i \theta)) d \theta$.
7. Let f, g be entire functions such that $|f| \leq|g|$. Prove that f is a constant times g.
8. Find all possible entire functions p such that for some constant $A>0,|p(z)| \leq(\sqrt{|z|}+A)^{2}$ for $|z|>2024$.
