COMPLEX ANALYSIS PRELIMINARY EXAMINATION

AUGUST 2022

In the questions below, for $a \in \mathbb{C}$ and $R>0$, let $D(a, R)$ denote the open disk of radius R centered at a.
(1) Find the Laurent expansion of $h(z)=\frac{1}{z^{2}-z-2}$ centered at $z=2$ that converges at $z=5 i$. For which $z \in \mathbb{C}$ does this expansion converge to $h(z)$?
(2) Compute

$$
\int_{\gamma} \frac{z+\pi}{(z-\pi)\left(e^{z}+1\right)} d z
$$

where γ is the boundary of the rectangle $\{x+i y: x, y \in \mathbb{R},|x|<1,-1<y<10\}$, oriented counterclockwise.
(3) Find all possible holomorphic functions g defined on the unit disk $D(0,1)$ such that $g(z)=\overline{g(z)}$ whenever $|z|<\frac{1}{4}$.
(4) Prove that if $z \in \mathbb{C}$ and $\operatorname{Re}\left(z^{n}\right) \geq 0$ for all $n \in \mathbb{N}$, then $z \in[0, \infty)$.
(5) Let f be an entire holomorphic function that maps $D(0,5)$ into $D(4 i, 2)$. Prove that the equation $f(z)+9 z^{3}-z=0$ has exact 3 solutions in the unit disk $D(0,1)$.
(6) Find all holomorphic functions $f: \mathbb{C} \rightarrow \mathbb{C}$ such that

$$
|f(z)| \leq \sqrt{|z|^{2}+|z|}
$$

for all $z \in \mathbb{C}$.
(7) Use the method of residues to compute

$$
\int_{0}^{\infty} \frac{d x}{4+x^{4}}
$$

(8) (a) Find an orientation-preserving conformal map $\phi: S \rightarrow H$ from the set

$$
S=\left\{x+i y: x, y \in \mathbb{R}, x^{2}+y^{2}<4, y>0\right\}
$$

onto

$$
H=\{x+i y: x, y \in \mathbb{R}, x>0\}
$$

such that $\phi(i)=2+i$.
(b) Prove or disprove that the map is unique.
(c) Does there exist an orientation-preserving, surjective conformal map $G: \mathbb{C} \rightarrow H$?

