Algebra Preliminary Exam

August 2016

INSTRUCTIONS: Work all eight problems. Justify your work. Each problem is worth 10 points. You have four hours to complete the exam.

- 1. Let H and K be normal subgroups of a group G and suppose that $H \cap K = \{e\}$. Prove that hk = kh for every $h \in H$ and $k \in K$.
- 2. Find a product of cyclic groups that is isomorphic to the factor group

$$(\mathbb{Z}_4 \times \mathbb{Z}_8)/\langle (1,2) \rangle$$
.

- 3. Let V be a finite-dimensional real vector space.
 - (a) Suppose S is a finite set that spans V. Prove that some subset of S is a basis for V.
 - (b) Suppose that L is a linearly independent subset of V. Prove that exists a basis B for V such that L is a subset of B.
- 4. Let I be an ideal in a commutative ring R. Define the radical of I to be

Rad
$$I = \{a \in R : a^n \in I \text{ for some positive integer } n\}.$$

Prove that $\operatorname{Rad} I$ is an ideal in R.

- 5. Prove that $d(a+bi) = a^2 + b^2$ makes the ring $\mathbb{Z}[i]$ into a Euclidean domain.
- 6. Find the Galois group of x^4+4x^2+2 over \mathbb{Q} , and give the Galois correspondence between the subgroups and the subfields of the splitting field.
- 7. (a) List four nonisomorphic groups of order 2³. Be sure to state how you know that each one of the four that you list is not isomorphic to the other three.
 - (b) For each prime p, construct a nonabelian group of order p^3 .
- 8. Let A be an $n \times n$ matrix with entries in \mathbb{C} , and suppose that $A^3 = A$.
 - (a) Prove that A is diagonalizable.
 - (b) Is A necessarily diagonalizable if \mathbb{C} is replaced by an arbitrary field F?