Algebra Preliminary Exam January 16, 2016 4 hours

- (1) Prove Lagrange's Theorem: If H is a subgroup of a finite group G, then the order of H divides the order of G.
- (2) Let $T: V \to W$ be a linear transformation of finite-dimensional vector spaces.
 - (a) If T is injective, prove there exists a linear transformation $T_1: W \to V$ such that $T_1 \circ T: V \to V$ is the identity map.
 - (b) If T is surjective, prove there exists a linear transformation $T_2: W \to V$ such that $T \circ T_2: W \to W$ is the identity map.
- (3) Let R be an integral domain. Show that there cannot be principal prime ideals $\langle x \rangle$ and $\langle y \rangle$ such that

$$\{0\} \ \subsetneqq \ \langle y \rangle \ \subsetneqq \ \langle x \rangle \ \subsetneqq \ R.$$

- (4) Find the minimal polynomial of $\alpha = \sqrt{5} \sqrt{2}$ over \mathbb{Q} .
- (5) Let S be a nonempty subset of a group G such that $xy^{-1}z \in S$ for all $x, y, z \in S$. Prove that there are a subgroup H and an element g in G such that S = Hg.
- (6) (a) Prove that the subset H of S₄ consisting of the identity and all products of pairs of disjoint transpositions is a normal subgroup of S₄.
 (b) Prove that S₄/H ≈ S₃.
- (7) Let $F(\alpha)$ and $F(\beta)$ be cubic extensions of a field F such that $F(\alpha, \beta)$ is a degree 6 extension of F. Prove that $F(\alpha, \beta)$ is a Galois extension of F with Galois group isomorphic to S_3 .
- (8) Let A and B be real, commuting matrices. Suppose further that A is diagonalizable over the reals and that B has minimal polynomial $x^4 1$. Prove that at least one eigenspace for A has dimension greater than 1.