Algebra Preliminary Exam January 15, 2015 2 pm to 6 pm

- (1) (a) Prove that every group of order 99 is abelian.
 - (b) Find all isomorphism classes of groups of order 99.
- (2) Let M be a unitary matrix. (A square complex matrix M is unitary if and only if $\overline{M^T}M = I$.) Prove from basic definitions that
 - (a) All eigenvalues of M have absolute value 1.
 - (b) Eigenvectors of M corresponding to different eigenvalues are (complex) orthogonal.
- (3) Let R be a commutative ring with unity. Suppose the zero divisors and 0 form an ideal I. Prove that R/I is an integral domain.
- (4) (a) Prove that conjugacy in a group is an equivalence relation.
 - (b) Prove that a group of prime power order has a non-trivial center.
- (5) Let x_i , i = 1, ..., 4, be positive real numbers with $\sum x_i < 1$. Prove that the following matrix is invertible.

($x_1 - x_1^2$	$-x_1x_2$	$-x_1x_3$	$-x_1x_4$	/
	$-x_2x_1$	$x_2 - x_2^2$	$-x_2x_3$	$-x_2x_4$	
	$-x_3x_1$	$-x_3x_2$	$x_3 - x_3^2$	$-x_3x_4$	
ĺ	$-x_4x_1$	$-x_4x_2$	$-x_4x_3$	$x_4 - x_4^2$	Ϊ

- (6) Let R be a ring with unity and let I and J be two-sided ideals of R. Define a ring homomorphism $\phi: R \to R/I \times R/J$ by $\phi(r) = (I + r, J + r)$.
 - (a) Find a relationship between I and J that is equivalent to ϕ being injective.
 - (b) Prove that ϕ is surjective if and only if I + J = R.
- (7) Let K be a degree 4 extension of \mathbb{Q} . Prove that K is Galois over \mathbb{Q} with Galois group isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$ if and only if there exist integers a and b such that $K = \mathbb{Q}(\sqrt{a}, \sqrt{b})$.
- (8) Let p be prime.
 - (a) For how many elements $\alpha \in \mathbb{F}_{p^6}$ is it true that $\mathbb{F}_{p^6} = \mathbb{F}_p(\alpha)$?
 - (b) How many monic irreducible polynomials of degree 6 are there in $\mathbb{F}_p[x]$?