Algebra Preliminary Exam August 19, 2015 4 hours

- (1) Let H and K be subgroups of a group G. For $x, y \in G$, prove that the double cosets HxK and HyK are either equal or disjoint.
- (2) Suppose the matrix A has rank r. Prove that there exist r rows and r columns such that the $r \times r$ submatrix consisting of the entries from the chosen rows and columns is invertible.
- (3) (a) Prove that the eigenvalues in \mathbb{C} of an orthogonal matrix have absolute value 1.
 - (b) Prove that orthogonal matrices are diagonalizable over \mathbb{C} .
- (4) Prove that the fields $\mathbb{Q}(\sqrt{3})$ and $\mathbb{Q}(\sqrt{6})$ are not isomorphic.
- (5) Prove that there are at least four nonisomorphic groups of order 20.
- (6) Let α and β be complex numbers such that $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$ are Galois extensions of \mathbb{Q} . (This implies $\mathbb{Q}(\alpha, \beta)$ is also a Galois extension of \mathbb{Q} .)
 - (a) Prove that $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}(\alpha)] = [\mathbb{Q}(\beta) : \mathbb{Q}(\alpha) \cap \mathbb{Q}(\beta)].$
 - (b) Using part (a) or otherwise, prove $Gal(\mathbb{Q}(\alpha,\beta)/\mathbb{Q}(\alpha)) \cong Gal(\mathbb{Q}(\beta)/\mathbb{Q}(\alpha)\cap\mathbb{Q}(\beta))$.
- (7) Let R_1 and R_2 be rings.
 - (a) If R_1 and R_2 have multiplicative identities, prove that every (two-sided) ideal in $R_1 \times R_2$ has the form $I_1 \times I_2$, where I_1 and I_2 are ideals in R_1 and R_2 , respectively.
 - (b) Construct an example to show the conclusion in (a) may be false if R_1 and R_2 do not have multiplicative identities.
- (8) Let \mathbb{Z}_n denote the integers mod n. For what n > 1 is it true that the number of distinct roots in \mathbb{Z}_n of every monic polynomial over \mathbb{Z}_n is at most the degree of the polynomial?