Algebra Preliminary Exam August 22, 2014

Work all eight problems, justifying your work. Each is worth 10 points. You have four hours.

- (1) Let G be a group with subgroup H and normal subgroup N.
 - (a) Prove that HN is a subgroup of G.
 - (b) Prove the Second Isomorphism Theorem: the groups (HN)/N and $H/(H \cap N)$ are isomorphic.
- (2) Let R be a ring with identity, and let a be an element of R with a right inverse. Prove that the following are equivalent:
 - (i) a has more than one right inverse,
 - (ii) a is a zero divisor,
 - (iii) a is not a unit.
- (3) (a) Find the centralizer of (1, 2, 3, 4, 5) in S_6 .
 - (b) Find the normalizer of $\langle (1, 2, 3, 4, 5) \rangle$ in S_6 .
- (4) Let F be the splitting field of $(x^2 3)(x^3 5)$ over \mathbb{Q} . Find the degree of F over \mathbb{Q} .
- (5) For an n × n matrix A, prove the following are equivalent.
 (i) A^TA = I.
 - (ii) For every $\mathbf{x} \in \mathbb{R}^n$, $A\mathbf{x}$ and \mathbf{x} have the same length.
 - (iii) For every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, the dot product of $A\mathbf{x}$ and $A\mathbf{y}$ equals the dot product of \mathbf{x} and \mathbf{y} .
- (6) Let F, K, L, M be fields such that [K : F] = 3, [L : F] = 4, [M : F] = 12, $K \subset M$, $L \subset M$, and L and M are Galois over F. Prove that there exists a field N with $F \subset N \subset M$ and [N : F] = 2.
- (7) Let A be a matrix over an algebraically closed field whose characteristic polynomial has distinct roots. Let B be a matrix that commutes with A.
 - (a) Prove that there exists a matrix P such that $P^{-1}AP$ and $P^{-1}BP$ are both diagonal.
 - (b) Prove that B is a polynomial in A.
- (8) Prove that, up to isomorphism, there are exactly five groups of order 8.