Algebra Preliminary Exam

August, 2023

Justification is required for all statements.

1. Let H and K be subgroups are of a group G such that K is a normal subgroup. Prove that $H K=\{h k: h \in H, k \in K\}$ is a subgroup of G.
2. Let $q(x)=(x-3)^{2}$ be the minimum polynomial of the $n \times n$ matrix S, and suppose that the $n \times n$ matrix T is diagonalizable. Also, assume that $S T=T S$.
(a) Prove that if v is a (nontrivial) eigenvector of T corresponding to eigenvalue λ, then $S v$ is also a (nontrivial) eigenvector of T.
(b) Prove that at least one eigenspace of T has dimension at least two.
3. Let A and B be $n \times n$ matrices over \mathbb{C}. Suppose the null space of A is contained in the image [or column space] of B. Prove that $\operatorname{rank}(A B)=\operatorname{rank}(A)+\operatorname{rank}(B)-n$.
4. Prove that an ideal I of a commutative ring R is prime if and only if R / I is an integral domain.
5. Prove that for every element g of the permutation group S_{N} is conjugate to g^{-1}.
6. Let K be a field extension of F of degree n and let $f(x) \in F[x]$ be an irreducible polynomial of degree $m>1$. Show that if m is relatively prime to n, then f has no root in K.
7. Let $\alpha=\sqrt{2}-\sqrt{5}$, and let $K=\mathbb{Q}(\alpha)$.
(a) Find the minimal polynomial $p(x)$ of α over \mathbb{Q}.
(b) Find the Galois group of K over \mathbb{Q}
(c) Find all subfields of K , expressing them explicitly in the form $\mathbb{Q}(\alpha)$. Prove that you have listed them all.
8. Prove that, up to isomorphism, there are four groups of order 70.
