Algebra Preliminary Exam January 27, 2024

Justification is required for all statements.

- (1) Let G be a group, and let $h \in G$ be fixed. Define $F_h : G \to G$ by $F_h(g) = h^{-1}gh$.
 - (a) Prove that F_h is an isomorphism.
 - (b) Let $H = \{h \in G : F_h \text{ is the identity}\}$. Prove that H is the center of G.
- (2) Show that if K is finite dimensional field extension of F, then K is algebraic over F.
- (3) Show that every subgroup of a cyclic group is cyclic.
- (4) Let F be a field, and let $p(x) \in F[x]$. Prove that an element $a \in F$ satisfies p(a) = 0 if and only if x a is a factor of p(x).
- (5) Let $F \supset K$ be an extension field, and let u be an element of F. Show that if [K(u):K] is an odd number, then $K(u^2) = K(u)$.
- (6) Let $T: V \to V$ be a linear transformation on a real vector space of dimension n such that, for all $v \in V$, there exists a positive integer k such that $(T 2I)^k v = 0$, where I is the identity transformation.
 - (a) Prove that $(T 2I)^n v = 0$ for all $v \in V$.
 - (b) Prove that if W is a subspace of V such that $T(W) \subseteq W$, then T(W) = W.

(7) Let
$$q(x) = x^5 - 6x + 3$$
.

- (a) Show q(x) is irreducible over \mathbb{Q} .
- (b) Prove that q(x) has exactly 3 real roots.
- (c) Show that the Galois group of q(x) over \mathbb{Q} contains elements of order 2 and 5.
- (8) Prove that $\mathbb{Z}[\sqrt{-3}]$ is an integral domain but not a unique factorization domain.