Algebra Preliminary Exam

January 2023

1. Let $S=\{x \in \mathbb{R}: x \neq 2\}$. For x and y in S, define

$$
x * y=x y-2 x-2 y+6 .
$$

Prove that $(S, *)$ is an abelian group.
2. Find a direct sum of cyclic groups isomorphic to the quotient group $\left(\mathbb{Z}_{20} \oplus \mathbb{Z}_{2}\right) /\langle(4,1)\rangle$.
3. Let $F \subset K$ be an extension field of degree n and $f(x) \in F[x]$ a polynomial of degree $m>1$. If $\operatorname{gcd}(m, n)=1$, show that f has no roots in K.
4. For an $n \times n$ complex matrix M, let M^{*} be conjugate transpose of M, that is, $\left(M^{*}\right)_{i, j}=\overline{M_{j, i}}$. Prove that if λ is an eigenvalue of M, then $\bar{\lambda}$ is an eigenvalue of M^{*}.
5. (a) Let A be a nonsingular $n \times n$ complex matrix, and suppose that A^{2} and A^{3} are diagonalizable. Prove that A is diagonalizable.
(b) Find an $n \times n$ complex matrix B such that B^{2} and B^{3} are diagonalizable, but B is not.
6. (a) Prove that $p(x)=2 x^{3}+3 x+4$ is irreducible over \mathbb{Z}_{5}.
(b) Let α be a zero of $p(x)$ in an extension field of \mathbb{Z}_{5}. Express $(3 \alpha+4)^{-1}$ in the form $a \alpha^{2}+b \alpha+c$ for a, b, and c in \mathbb{Z}_{5}.
7. A proper ideal P of a commutative ring R is prime if $a b \in P$ implies that either $a \in P$ or $b \in P$. Prove that every nonzero prime ideal in a principal ideal domain is maximal.
8. Let a and b be integers, and suppose $p(x)=x^{4}+a x^{2}+b^{2}$ is irreducible over \mathbb{Q}.
(a) If α is a root of $p(x)$ in an extension field, show that $K=\mathbb{Q}(\alpha)$ is the splitting field for $p(x)$.
(b) Compute the Galois group of K over \mathbb{Q}.

