Algebra Preliminary Exam

January 2023

1. Let $S = \{x \in \mathbb{R} : x \neq 2\}$. For x and y in S, define

$$x * y = xy - 2x - 2y + 6.$$

Prove that (S, *) is an abelian group.

- 2. Find a direct sum of cyclic groups isomorphic to the quotient group $(\mathbb{Z}_{20} \oplus \mathbb{Z}_2)/\langle (4,1) \rangle$.
- 3. Let $F \subset K$ be an extension field of degree n and $f(x) \in F[x]$ a polynomial of degree m > 1. If gcd(m, n) = 1, show that f has no roots in K.
- 4. For an $n \times n$ complex matrix M, let M^* be conjugate transpose of M, that is, $(M^*)_{i,j} = \overline{M_{j,i}}$. Prove that if λ is an eigenvalue of M, then $\overline{\lambda}$ is an eigenvalue of M^* .
- 5. (a) Let A be a nonsingular $n \times n$ complex matrix, and suppose that A^2 and A^3 are diagonalizable. Prove that A is diagonalizable.
 - (b) Find an $n \times n$ complex matrix B such that B^2 and B^3 are diagonalizable, but B is not.
- 6. (a) Prove that $p(x) = 2x^3 + 3x + 4$ is irreducible over \mathbb{Z}_5 .
 - (b) Let α be a zero of p(x) in an extension field of \mathbb{Z}_5 . Express $(3\alpha + 4)^{-1}$ in the form $a\alpha^2 + b\alpha + c$ for a, b, and c in \mathbb{Z}_5 .
- 7. A proper ideal P of a commutative ring R is prime if $ab \in P$ implies that either $a \in P$ or $b \in P$. Prove that every nonzero prime ideal in a principal ideal domain is maximal.
- 8. Let a and b be integers, and suppose $p(x) = x^4 + ax^2 + b^2$ is irreducible over \mathbb{Q} .
 - (a) If α is a root of p(x) in an extension field, show that $K = \mathbb{Q}(\alpha)$ is the splitting field for p(x).
 - (b) Compute the Galois group of K over \mathbb{Q} .