REAL ANALYSIS PRELIMINARY EXAMINATION AUGUST 13, 2013

(1) Let C be the curve parametrized by

$$\vec{r}(t) = e^{\sqrt{t}} \vec{i} + \arctan(t^3) \vec{j}, \quad 0 \le t \le 1.$$

Evaluate

$$\int_C (6xy+2) \, dx + (3x^2+8y) \, dy.$$

- (2) Determine the maximum and minimum values of the quantity xy + 4z on the half ellipsoid $x^2 + 4y^2 + 2z^2 = 64$, $z \ge 0$.
- (3) Define $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ by the formula

$$f(x) = \begin{cases} 0 & (x,y) = (0,0) \\ \frac{xy^2}{x^2 + y^2} & (x,y) \neq (0,0). \end{cases}$$

- (a) Prove that f is continuous at (0,0).
- (b) Prove that if $\vec{u} = a \vec{i} + b \vec{j}$ is a unit vector, then the directional derivative of f at (0,0) in the direction of \vec{u} exists, and compute its value.
- (c) Is f is differentiable at (0,0)?
- (4) Let $\{f_n\}$ be a sequence of continuous functions on [0, 1].
 - (a) Suppose $\{f_n\}$ converges uniformly to a function f. Prove that f is continuous.
 - (b) Give an example where $\{f_n\}$ converges pointwise to a function f that is not continuous.
- (5) Suppose that $\{a_n\}$ be a decreasing sequence of positive real numbers. Prove that the infinite series $\sum_{n=1}^{\infty} a_n$ converges if and only if the infinite series $\sum_{k=0}^{\infty} 2^k a_{2^k}$ converges.
- (6) Suppose that $h: [0,1] \longrightarrow \mathbb{R}$ is bounded and has the property that h is Riemann integrable on $[\epsilon, 1]$ for every $0 < \epsilon < 1$. Using the definition of the Riemann integral, prove that h is Riemann integrable on the interval [0,1].

(7) Let h be a real-valued function and differentiable function on $[0, \infty)$ such that h(0) = 1 and $3 \le h'(x) \le 4$ for all $x \ge 0$. Prove that there exists a constant c such that

$$1 \le \frac{h(x)}{\sqrt{9x^2 + 1}} \le c$$

for all $x \ge 0$.

(8) Let f be a continuous function of period $2\pi,$ and suppose that

$$a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

is the Fourier series of f.

- (a) Prove that the sum $\sum_{n=1}^{\infty} |a_n|^2$ converges.
- (b) Suppose also that $\sum_{n=1}^{\infty} n \max\{|a_n|, |b_n|\}$ converges. Prove that f is differentiable and that the integral $\int_{-\pi}^{\pi} (f'(x))^2 dx$ is finite.