2018 Calculus Bee
 Monday, April 9, 2018

1st Place	Bao Thach
2nd Place	Hy Dang
3rd Place	Thinh Doan

(1) Find the point (x, y) on the graph of $y=2017 x^{2}$ where the slope of the tangent line is 2018 .
(2) Find $\int z e^{2018 z} d z$.
(3) Find $\left.\frac{d}{d \theta}(\sin (\cos (\tan 2018 \theta)))\right)$.
(4) Evaluate $\int_{-2018}^{2018} \sin ^{45} x d x$.
(5) Find

$$
\lim _{x \rightarrow \infty} \frac{2^{x}+x^{2018}}{2^{x+1}+3 x^{2018}}
$$

(6) Find the volume of the solid produced by revolving the region between $y=2018 \sqrt{x}$ and $y=2018 x$ around the x-axis.
Your answer does not need to be simplified.
(7) Find the sum $\sum_{n=0}^{\infty} \frac{1}{2018^{n}}$, or determine that it diverges.
(8) Find the minimum value of the function $x^{2}+e^{-x}$ on the interval $[-2018,0]$.
(9) The derivative of the function F is graphed below.

Suppose that $F(0)=0$. Find $F(3)+F^{\prime}(3)$.
(10) Compute

$$
\int_{0}^{\pi / 4} \frac{\sin ^{2} z-\cos ^{2} z}{\sin ^{2} z+\cos ^{2} z} d z
$$

