2013: The Calculus Games

Tuesday, April 23, 2013
Winners:

First Place	Vicky Xue
Second Place	Brian Preskitt
Third Place	Anh Nguyen

1. Evaluate $\int_{0}^{2013} \ln 2013 d x$.
2. Compute and simplify $f^{\prime}(x)$ for $f(x)=\frac{x^{2}+1}{x}$.
3. Find the equation of the line tangent to $y=x(x+1)$ at $x=1$. Write the equation in the form $y=m x+b$.
4. Find

$$
\int_{\int_{0}^{2} x d x}^{\int_{0}^{2}(x+1) d x}(x+2) d x
$$

5. Find the value of x at which $x \sqrt{1-x^{4}}$ achieves its maximum.
6. Find the area of the region between the curves $y=x^{4}$ and $y=20-x^{2}$.
7. For what x does $\sum_{n=0}^{\infty}\left(\frac{x^{2}+6 x-1}{6}\right)^{n}$ converge?
8. Find the smallest positive x-value of a critical point of $\sin x+\sin x \cos x$.
9. Evaluate $\lim _{x \rightarrow \infty}\left(\sqrt[3]{x^{3}+2 x^{2}+3 x+4}-x\right)$.
10. Evaluate $\frac{d}{d x} \int_{x^{2}}^{x^{3}} e^{u^{2}} d u$.
11. Evaluate and simplify

$$
\frac{d}{d x} \cos (\arcsin (x))
$$

12. Find c so that the tangent line to $y=e^{2 x}$ at $x=c$ passes through the origin.
13. Evaluate $\int_{0}^{\infty} \frac{x^{2}}{(x+1)^{5}} d x$.
