2013: The Calculus Games Tuesday, April 23, 2013

Winners:	
First Place	Vicky Xue
Second Place	Brian Preskitt
Third Place	Anh Nguyen

- 1. Evaluate $\int_{0}^{2013} \ln 2013 \, dx$.
- 2. Compute and simplify f'(x) for $f(x) = \frac{x^2 + 1}{x}$.
- 3. Find the equation of the line tangent to y = x(x + 1) at x = 1. Write the equation in the form y = mx + b.
- 4. Find

$$\int_{\int_0^2 x \, dx}^{\int_0^2 (x+1) \, dx} (x+2) \, dx$$

- 5. Find the value of x at which $x\sqrt{1-x^4}$ achieves its maximum.
- 6. Find the area of the region between the curves $y = x^4$ and $y = 20 x^2$.
- 7. For what x does $\sum_{n=0}^{\infty} \left(\frac{x^2+6x-1}{6}\right)^n$ converge?
- 8. Find the smallest positive x-value of a critical point of $\sin x + \sin x \cos x$.
- 9. Evaluate $\lim_{x \to \infty} \left(\sqrt[3]{x^3 + 2x^2 + 3x + 4} x \right)$.
- 10. Evaluate $\frac{d}{dx} \int_{x^2}^{x^3} e^{u^2} du$.
- 11. Evaluate and simplify

$$\frac{d}{dx}\cos\left(\arcsin\left(x\right)\right).$$

- 12. Find c so that the tangent line to $y = e^{2x}$ at x = c passes through the origin.
- 13. Evaluate $\int_0^\infty \frac{x^2}{(x+1)^5} \, dx.$