2012 Calculus Bee
 Tuesday, April 24, 2012

Winners:

First Place	Brian Preskitt
Second Place	Janson Oyler
Third Place	Vicky Xue

(1) Find

$$
\frac{d}{d x}\left(x^{2012}+\pi^{2012} \sin \left(\frac{\pi \sqrt{2}}{17}\right)\right) .
$$

(2) Find the x-value of the maximum of the function $x^{503} e^{-2012 x}$.
(3) Find

$$
\int_{-\pi}^{\pi}\left(x^{2}+\sin \left(x^{3}\right)\right) d x
$$

(4) Write the equation of the tangent line to the function $f(x)=2012+x-6 x^{2}-x^{3}$ that has the largest possible slope. Give your answer in the form $y=m x+b$.
(5) Evaluate and simplify

$$
\sum_{n=2}^{\infty} \frac{1}{(n+2012)(n+2011)}
$$

(6) Consider the region R bounded by $y=5-x^{2}$ and $y=4$. Find the volume of the solid of revolution generated by revolving R around the y-axis.
(7) Let

$$
g(x)= \begin{cases}-2 & \text { if } x \leq-2 \\ x & \text { if }-2<x \leq 2 \\ -x+4 & \text { if } 2<x \leq 3 \\ 1 & \text { if } x>3\end{cases}
$$

Find $\int_{-5}^{5} g(x) d x$.
(8) Let $y=\int_{-1}^{x} \frac{t^{3}}{t^{10}+5} d t$. Find the equation of the tangent line to the curve when $x=1$.

