2007 TCU Calculus Bee

Friday, April 27, 2007	
First Place	John Rhoads
Second Place	Darren Ong
Third Place	Chris Huff

- Problem 1: Find d/dx (x²⁰⁰⁷).
 Problem 2: Find ∫₀¹ ln (π² + 4)/√(e⁵ 9) dx.
- **Problem 3:** Find $\int (2007x+1)^{2007} dx$.
- **Problem 4:** Find $\frac{d}{d\theta} \left(\arctan\left(2\left(\sin^2\theta + \cos^2\theta\right)^{2007} + 4\right)\right)$.

• Problem 5: How many vertical asympttes does the graph of $y = \frac{x+1}{x^2 - 2006x - 2007}$ have?

• **Problem 6:** Find $\int_{-\pi}^{\pi} z^{142} \sin^{57} (z^9) dz$.

• Problem 7: For a > 0, consider the function $g(x) = \begin{cases} x & \text{if } 0 \le x < a \\ 2a - x & \text{if } a \le x \le 2a \end{cases}$. Suppose that $\int_{0}^{2a} g(x) \, dx = 2007$. Find a.

- **Problem 8:** Find $\int \ln\left(e^{7x^{45}}\right) dx$.
- Problem 9: Find the equation of the tangent line to the curve $^2 2y = x^3$ at the point (-1, 1).
- Problem 10: Does this series converge or diverge? $\sum_{k=2007}^{\infty} \frac{1}{k \ln (4k+1)}$
- Problem 11: Find numbers a and b so that the graph of $y = ax^3 + bx^2$ has an inflection point at (-1, 1).
- Problem 12: Find $\int \frac{e^{\sqrt{s}}}{\sqrt{s}} ds$.

• **Problem 13:** If p is a positive integer, evaluate $\frac{1}{p^2} - \frac{1}{9p^3} + \frac{1}{9^2p^4} - \frac{1}{9^3p^5} + \dots$

- Problem 14: Find $\lim_{n \to \infty} \left(n \sqrt{n^2 + 2007n} \right)$.
- **Problem 15:** Evaluate $\int \frac{\ln x}{x^4} dx$.