Find the point on the surface

$$xy + 3x + z^2 = 9$$

closest to the origin.
Find the point on the surface

\[xy + 3x + z^2 = 9 \]

closest to the origin.

Minimise distance.
Distance formula:

\[d = \sqrt{(x-0)^2 + (y-0)^2 + (z-0)^2}. \]

Optimisation tip: if everything is under a root, just get rid of it ⋆.

Minimise \(D = x^2 + y^2 + z^2. \)
Distance formula:

\[d = \sqrt{(x - 0)^2 + (y - 0)^2 + (z - 0)^2}. \]
Distance formula:

\[d = \sqrt{(x - 0)^2 + (y - 0)^2 + (z - 0)^2}. \]

Optimisation tip: if *everything* is under a root, just get rid of it ⭐.
Distance formula:

\[d = \sqrt{(x - 0)^2 + (y - 0)^2 + (z - 0)^2}. \]

Optimisation tip: if *everything* is under a root, just get rid of it ⭐.

Minimise

\[D = x^2 + y^2 + z^2. \]
The problem

Formulae

Domain

Calculus

Boundary

Three variables are not independent:

\[xy + 3x + z^2 = 9 \iff z^2 = 9 - xy - 3x, \]

so

\[D = x^2 + y^2 + (9 - xy - 3x). \]
Three variables are not independent:

\[xy + 3x + z^2 = 9 \iff z^2 = 9 - xy - 3x, \]

\[D = x^2 + y^2 + z^2. \]
\[D = x^2 + y^2 + z^2. \]

Three variables are not independent:

\[xy + 3x + z^2 = 9 \iff z^2 = 9 - xy - 3x, \]

so

\[D = x^2 + y^2 + (9 - xy - 3x). \]
The problem

<table>
<thead>
<tr>
<th>Formulae</th>
<th>Domain</th>
<th>Calculus</th>
<th>Boundary</th>
</tr>
</thead>
</table>

xy + 3x + z^2 = 9 \implies xy + 3x \leq 9.
The problem

Formulae

\[\text{Boundary} \]

\[xy + 3x + z^2 = 9 \implies xy + 3x \leq 9. \]

Boundary is where one or more inequalities become equalities:

\[xy + 3x = 9. \]
\[D = x^2 + y^2 + (9 - xy - 3x). \]
The problem

Formulae

\[D = x^2 + y^2 + (9 - xy - 3x). \]

\[\nabla D = \langle 2x - y - 3, 2y - x \rangle = \langle 0, 0 \rangle. \]
The problem

Formulae

Domain

Calculus

Boundary

2y − x = 0 \Rightarrow x = 2y.
The problem

Formulae

Domain

Calculus

Boundary

$$2y - x = 0 \Rightarrow x = 2y.$$

Simultaneous solution:

$$2x - y - 3 = 0$$

$$2(2y) - y - 3 = 0$$

$$3y - 3 = 0$$

$$y = 1.$$
The problem

Formulæ

Domain

Calculus

Boundary

2y - x = 0 \Rightarrow x = 2y.

Simultaneous solution:

\[2x - y - 3 = 0 \]

\[2(2y) - y - 3 = 0 \]

\[3y - 3 = 0 \]

\[y = 1. \]

Always look for \((x, y)\) pairs: \((x, y) = (2, 1)\).
\[2y - x = 0 \Rightarrow x = 2y. \]

Simultaneous solution:

\[2x - y - 3 = 0 \]

\[2(2y) - y - 3 = 0 \]

\[3y - 3 = 0 \]

\[y = 1. \]

Always look for \((x, y)\) pairs: \((x, y) = (2, 1)\).

Must deal with the *boundary.*
When $xy + 3x = 9$
When \(xy + 3x = 9 \), then \(x = \frac{9}{y + 3} \):

\[
D = x^2 + y^2 + (9 - xy - 3x)
= \left(\frac{9}{y + 3} \right)^2 + y^2.
\]
When \(xy + 3x = 9 \), then \(x = \frac{9}{y + 3} \):

\[
D = x^2 + y^2 + (9 - xy - 3x) = \left(\frac{9}{y + 3} \right)^2 + y^2.
\]

Find critical points for this one-variable problem:

\[
\frac{dD}{dy} = -\frac{2 \cdot 9^2}{(y + 3)^3} + 2y = 0.
\]
\[- \frac{2 \cdot 9^2}{(y + 3)^3} + 2y = 0\]

\[2y = \frac{2 \cdot 9^2}{(y + 3)^3}\]

\[2y(y + 3)^3 = 2 \cdot 9^2\]

\[2y^4 + 18y^3 + 54y^2 + 54 - 162 = 0.\]
\[-\frac{2 \cdot 9^2}{(y + 3)^3} + 2y = 0\]

\[2y = \frac{2 \cdot 9^2}{(y + 3)^3}\]

\[2y(y + 3)^3 = 2 \cdot 9^2\]

\[2y^4 + 18y^3 + 54y^2 + 54 - 162 = 0.\]

Ugh!
\[2y^4 + 18y^3 + 54y^2 + 54 - 162 = 0. \]

By CAS: \(y \approx -5.458, 1.141. \)
\[2y^4 + 18y^3 + 54y^2 + 54 - 162 = 0.\]

By CAS: \(y \approx -5.458, 1.141.\)

Always looking for \((x, y)\) pairs: \((x, y) \approx (-3.662, -5.458), (x, y) = (1.141, 2.173).\)
Already had critical point \((x, y) = (2, 1)\)
Already had critical point \((x, y) = (2, 1)\); now have \((x, y) \approx (1.141, 2.173)\).

Now, take *all* critical points and plug in to

\[
D = x^2 + y^2 + (9 - xy - 3x)
\]

to find minimum distance ⋆⋆:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>(1.141)</td>
<td>2.173</td>
<td>6.026</td>
</tr>
</tbody>
</table>
The problem

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>1.141</td>
<td>2.173</td>
<td>6.026</td>
</tr>
</tbody>
</table>

Minimum $\star\star$ when $(x, y) = (2, 1)$.
<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>1.141</td>
<td>2.173</td>
<td>6.026</td>
</tr>
</tbody>
</table>

Minimum ★★ when \((x, y) = (2, 1)\).

Looking for a point \((x, y, z)\). Since \(xy + 3x + z^2 = 9\), get

\[
z = \pm \sqrt{9 - xy - 3x} = \pm \sqrt{9 - (2)(1) - 3(2)} = \pm 1.
\]
The problem

Formulae

Domain

Calculus

Boundary

\[
\begin{array}{ccc}
\hline
x & y & D \\
\hline
2 & 1 & 6 \\
1.141 & 2.173 & 6.026 \\
\hline
\end{array}
\]

Minimum \(\star\star\) when \((x, y) = (2, 1)\).

Looking for a point \((x, y, z)\). Since \(xy + 3x + z^2 = 9\), get

\[
z = \pm \sqrt{9 - xy - 3x} = \pm \sqrt{9 - (2)(1) - 3(2)} = \pm 1.
\]

Closest points are \((2, 1, \pm 1)\), and minimum distance is \(\sqrt{D} = \sqrt{6}\).