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Abstract

A residually finite group acts on a profinite completion by left translation. We consider the corresponding
crossed product C∗-algebra for discrete countable groups that are central extensions of finitely generated
abelian groups by finitely generated abelian groups (these are automatically residually finite). We prove that
all such crossed products are classifiable by K-theoretic invariants using techniques from the classification
theory for nuclear C∗-algebras.
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1. Introduction

In [16] Orfanos introduced a class of C∗-algebras generalizing the classical Bunce–Deddens
algebras [4]. These generalized Bunce–Deddens algebras can be constructed starting with any
discrete, countable, amenable and residually finite group—the construction yields the classical
Bunce–Deddens algebras when starting with Z. They are C∗-algebras of the form C(G̃) � G,
where G acts on a profinite completion G̃ by left translation. From the point of view of the
classification theory for nuclear C∗-algebras [10,23], these C∗-algebras enjoy many desirable
properties: they are simple, separable, nuclear and quasidiagonal; they have real rank zero, stable
rank one, unique trace and comparability of projections (see [16]).
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In this note we prove that the generalized Bunce–Deddens algebras associated with a discrete,
countable and residually finite group G that is a central extension of a finitely generated abelian
group by a finitely generated abelian group have finite decomposition rank (Proposition 2.1).
This result covers all the profinite completions of G, see Section 2. For this, we will use that the
decomposition rank of a C(X)-algebra is finite as long as X has finite covering dimension and
the decomposition rank of the fibers is uniformly bounded (Lemma 3.1). We are then free to use
powerful theorems of Lin and Winter [14,25] to observe that the generalized Bunce–Deddens
algebras associated with such groups G are classified by K-theory. The above class of groups
contains some examples of interest, such as the integer Heisenberg group (of any dimension). It
is also shown that the decomposition rank of C∗(G) is finite for all such groups (Theorem 2.2).

The classical Bunce–Deddens algebras were classified by Bunce and Deddens along the same
lines as the Uniformly Hyperfinite (UHF) algebras. Tensor products of Bunce–Deddens algebras
were classified by Pasnicu in [18]. In both cases the algebras in question are inductive limits of
circle algebras—in fact, of algebras of the form C(T) ⊗ Mr . The trivial observation that these
algebras have slow dimension growth (owing to the fact that T has covering dimension equal to 1)
can be used to subsume these results under subsequent and very general classification theorems
([8,5], see also [23, Theorem 3.3.1]).

In the present case, the algebras in question are inductive limits of C∗-algebras of the form
C∗(L)⊗Mr for certain (usually non-abelian) subgroups L ⊂ G. In the place of covering dimen-
sion we use decomposition rank, a noncommutative analog of covering dimension introduced by
Kirchberg and Winter [13].

Let C be the class of all unital, separable and simple C∗-algebras A with real rank zero and
finite decomposition rank that satisfy the Universal Coefficient Theorem, and such that ∂eT (A),
the extreme boundary of the tracial state space, is compact and zero-dimensional. The Elliott
invariant for such algebras is their ordered K-theory:

Ell(A) = (
K0(A),K0(A)+, [1A]0,K1(A)

)
.

(See [10] for the general version of the Elliott invariant.) A combination of results of Lin and
Winter gives:

Theorem 1.1. (See [25, Corollary 6.5].) Let A,B ∈ C . Then A ∼= B if and only if Ell(A) ∼=
Ell(B).

In the early 1990s Elliott [7] initiated a program to classify nuclear C∗-algebras and conjec-
tured such a result (for a larger class and with a refined invariant, including for example the space
of tracial states). One aim of this paper is to show that the class of generalized Bunce–Deddens
algebras associated with a large collection of groups is a natural example where the program
succeeds.

This paper has three additional sections. In Section 2 we recall the relevant definitions, state
our main result (Theorem 2.3) and the key technical result behind its proof (Proposition 2.1). In
Section 3 we recall the definition of decomposition rank and prove a lemma concerned with the
decomposition rank of C(X)-algebras. Section 4 contains the proof of Proposition 2.1. The proof
uses a continuous field structure of certain group C∗-algebras due to Packer and Raeburn [17].
The decomposition rank such a group C∗-algebra is estimated in terms of the ranks of the normal
subgroup and its quotient (Theorem 2.2). For this, we use a result of Poguntke [20] concerning the
structure of twisted group algebras of abelian groups. The decomposition rank of these twisted
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group algebras is then estimated using the decomposition rank of noncommutative tori, for which
we provide an estimate in Lemma 4.4.

2. Main results

We first recall Orfanos’ definition of a generalized Bunce–Deddens algebra. Let G be a dis-
crete, countable and amenable group. Assume also that G is residually finite, so that there
is a nested sequence of finite index, normal subgroups of G with trivial intersection. Let
G ⊃ L1 ⊃ L2 ⊃ · · · be such a sequence. The profinite completion of G with respect to this
sequence is the inverse limit

G̃ = lim←− G/Li

with connecting maps xLi+1 	→ xLi . This is a compact, Hausdorff and totally disconnected
group. The group G acts by left multiplication. The corresponding crossed product

C(G̃) � G

is called a generalized Bunce–Deddens algebra associated with G.
For example, let q = (qi) be a sequence of positive integers with qi |qi+1 for every i. With

G = Z and Li = qiZ, the above construction yields the usual Bunce–Deddens algebra of type q .
Let G be the collection of all (discrete) groups G with the following property: there exist

finitely generated abelian groups N and Q such that G is a central extension

1 → N → G → Q → 1 (1)

(where by “central” we mean that the image of N lies in the center of G). A celebrated theorem of
Hall [22, 15.4.1] states that a finitely generated group that is an extension of an abelian group by
a nilpotent group is residually finite. The groups in G are therefore residually finite. They are also
amenable, as an extension of amenable groups is itself amenable. As noted in the introduction,
G contains the integer Heisenberg groups of all dimensions (see Example 2.4 below).

Proposition 2.1. If G ∈ G , then any generalized Bunce–Deddens algebra C(G̃) � G associated
with G has finite decomposition rank. (This covers all profinite completions G̃ of G.)

See Section 3 for the definition of decomposition rank and Section 4 for the proof. One ingre-
dient of its proof is the following result, also proved in Section 4.

Theorem 2.2. Let G be a countable, discrete group that is a central extension

1 → N → G → Q → 1

where N and Q are finitely generated abelian groups of ranks n and m, respectively. Then

drC∗(G) � (n + 1)
(
2m2 + 4m + 1

) − 1.

Our main result can now be stated as:
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Theorem 2.3. The generalized Bunce–Deddens algebras C(G̃) � G associated with groups
G ∈ G are classified by their Elliott invariant.

Proof. Corollary 7 and Theorem 12 of [16] show that all generalized Bunce–Deddens algebras
are unital, separable, simple, and that they have real rank zero and unique trace. By Proposi-
tion 2.1 the ones associated with groups in G have finite decomposition rank, so they satisfy the
hypothesis of the classification Theorem 1.1. �
Example 2.4. Fix a positive integer m. Define H2m+1 as the group of all square matrices of size
m + 2 of the form ⎛

⎝1 xt z

0 1m y

0 0 1

⎞
⎠

where x, y ∈ Z
m, z ∈ Z, and 1m is the identity matrix in Mm. This is a discrete, countable and

residually finite group. Indeed, let (qi) be a sequence of positive integers such that qi |qi+1 for
all i. For each i let Li be the subgroup of H2m+1 consisting of those matrices with x, y ∈ (qiZ)m

and z ∈ qiZ. This provides a nested sequence of finite index, normal subgroups with trivial inter-
section. Moreover, H2m+1 is a central extension

1 → Z → H2m+1 → Z
2m → 1,

as one can check (notice that the center of H2m+1 is generated by the matrix with x = y = 0 and
z = 1). Thus H2m+1 ∈ G .

It is well known that C∗(H3) may be regarded as the C∗-algebra of sections of a continuous
field of (irrational and rational) rotation algebras over T [1]. Similarly, one can prove that the
C∗-algebra of H2m+1 may be regarded as the C∗-algebra of a continuous field of noncommuta-
tive tori (in fact, of m-th tensor powers of rotation algebras) over T. A theorem of Packer and
Raeburn [17] shows that this is an instance of a more general phenomenon, a fact we use in
Section 4.

3. The decomposition rank of C(X)-algebras

For any two C∗-algebras A and B , we have

dr(A ⊗ B) � (drA − 1)(drB − 1) + 1,

see Remark 3.2 of [13]. In this section we prove an analogous estimate for C(X)-algebras. Let
us first recall some of the relevant definitions.

Let A and B be C∗-algebras. A completely positive (c.p.) map φ : F → A is said to have
order zero if φ(a)φ(b) = 0 for all a, b ∈ A+ with ab = 0. We refer the reader to [26] for a
detailed treatment of order zero maps. A c.p. map φ : ⊕s

i=1 Mri → A is k-decomposable if there
is a partition

⊔k
j=0 Ij = {1, . . . , s} such that φ restricted to

⊕
i∈Ij

Mri has order zero for all
j ∈ {0, . . . , k}.

In [13], Kirchberg and Winter introduced a noncommutative analog of topological cover-
ing dimension called decomposition rank. A separable C∗-algebra A has decomposition rank k,
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drA = k for short, if k is the least integer such that the following holds: for any finite subset F
of A and any ε > 0, there are a finite dimensional C∗-algebra F and c.p. contractions ψ : A → F ,
φ : F → A, with φ k-decomposable, satisfying

∥∥a − φψ(a)
∥∥ < ε

for all a in F . (That is, (F,ψ,φ) is a c.p. approximation of F to within ε.) We have, for example,
that drC(X) = dimX when X is a compact metric space (see [13, Proposition 3.3]).

A C(X)-algebra is a C∗-algebra A endowed with a nondegenerate ∗-homomorphism of C(X)

to the center of the multiplier algebra of A. (Nondegeneracy means that C(X)A is dense in A.)
Consult for example [3, §2.1] for an introduction to C(X)-algebras. Such algebras were intro-
duced by Kasparov in [12] and generalize continuous fields of C∗-algebras; they may be regarded
as “upper semicontinuous” fields of C∗-algebras.

Let A be a C(X)-algebra. For a closed subset F ⊂ A we write A|F for the quotient of A by
the (closed) ideal C0(X \ F)A. If F consists of a single point x we write A(x) instead of A|{x}
and call A(x) the fiber of A at x. The image of an element a ∈ A under the quotient map of A to
A(x) is written a(x).

Lemma 3.1. Let X be a compact metric space and A a (separable) C(X)-algebra. If dimX � l

and drA(x) � k for every x ∈ X, then drA � (l + 1)(k + 1) − 1.

Proof. Let a finite subset F of A and ε > 0 be given. We claim that for every x ∈ X there are
a finite dimensional C∗-algebra Fx and c.p. contractions

A
ψx−→ Fx

φx−→ A,

with φx k-decomposable, such that

∥∥(φxψx − idA)(a)(x)
∥∥ < ε (2)

for all a in F .
Fix x ∈ X. Because drA(x) � k, there is a c.p. approximation (Fx,ψ

x,φx) of {a(x): a ∈ F }
to within ε/2, with φx k-decomposable. Let ψx be the composition of ψx with the quotient map
A → A(x). By Remark 2.4 of [13], φx lifts to a c.p. map Φx : Fx → A that is k-decomposable,
but not necessarily contractive.

We may assume that Φx(1)(x) = φx(1) = ‖φx‖ �= 0 (we abbreviate 1Fx to 1). Recall from [3]
that for every a ∈ A the function N(a) : y 	→ ‖a(y)‖A(y) is upper semicontinuous on X and
satisfies N(f a) = |f |N(a) for every f ∈ Cb(X). Then there is a δ > 0 such that d(x, y) < δ

implies N(Φx(1))(y) � 1 + ε/2.
Let h ∈ C(X)+ be of norm 1/(1 + ε/2), taking on its maximum value at x and vanishing on

{y: d(x, y) � δ}. Then

∥∥hΦx(1)
∥∥ = sup N

(
hΦx(1)

)
(y) = sup h(y)N

(
Φx(1)

)
(y) � 1.
y∈X {y: d(y,x)<δ}
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This proves that the k-decomposable c.p. map φx : f 	→ hΦx(f ), f ∈ Fx , is contractive. More-
over, ∥∥φx(f )(x) − φx(f )

∥∥ < ε/2,

and therefore ψx and φx satisfy (2). This proves the claim.
Since dimX = l, we may apply Proposition 1.5 of [13] to obtain x1, . . . , xs ∈ X, an open cover

{Ui}si=1 of X, and a partition
⊔l

j=0 Ij = {1, . . . , s} such that for all i ∈ {1, . . . , s}, j ∈ {0, . . . , l},
a ∈ F , and y ∈ Ui , we have

U,U ′ ∈ Ij ⇒ U ∩ U ′ = ∅, and
∥∥(φxi

ψxi
− idA)(a)(y)

∥∥ < ε.

Let {hi} be a partition of unity subordinate to {Ui}. Define

• F := ⊕s
i=1 Fxi

,
• ψ : A → F by ψ(a) = ψx1(a) ⊕ · · · ⊕ ψxs (a), and
• φ : F → A by φ(f1 ⊕ · · · ⊕ fs) = ∑

hiφxi
(fi).

Then ψ and φ are c.p. contractions with φ an ((l +1)(k+1)−1)-decomposable map. A standard
estimate gives ‖φψ(a) − a‖ < ε for all a in F , showing that drA � (l + 1)(k + 1) − 1. �
4. Continuous fields of twisted group algebras

We begin by briefly reviewing the definition of a twisted group C∗-algebra. We restrict our-
selves to discrete groups. For a more general treatment, see for example [6].

Let G be a discrete group. A multiplier (or normalized 2-cocycle with values in T) on G is
a map ω : G × G → T satisfying

ω(s,1) = ω(1, s) = 1 and ω(s, t)ω(st, r) = ω(s, tr)ω(t, r)

for all s, t, r ∈ G. If f : G → T, then we refer to

∂f (s, t) := f (s)f (t)f (st)

as a coboundary. Two multipliers ω and ω′ are cohomologous if they differ by a coboundary. The
group of all cohomology classes [ω] is written H 2(G,T), and is in fact isomorphic to the (usual)
second group cohomology of G with coefficients in T (because G is discrete).

Let ω be a multiplier on G. Define an ω-twisted convolution product and an ω-twisted invo-
lution on Cc(G) by ( ∑

s

λss

)
∗ω

( ∑
t

μt t

)
=

∑
s,t

λsμtω(s, t)st

and ( ∑
λss

)∗
=

∑
ω

(
s−1, s

)
λss

−1.
s s
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We write Cc(G,ω) for Cc(G) with these operations. To complete this ∗-algebra, let us first define
an ω-representation of G to be a map V of G to the unitaries on some Hilbert space such that
VsVt = ω(s, t)Vst for all s, t ∈ G. It is not hard to see that every ω-representation gives rise
to a ∗-representation of Cc(G,ω) and that, conversely, every nondegenerate ∗-representation
of Cc(G,ω) arises in this way.

The (full) twisted group C∗-algebra C∗(G,ω) is the enveloping C∗-algebra of Cc(G,ω).
There is a reduced version as well, and they coincide for amenable groups. One can show that
cohomologous multipliers yield isomorphic twisted group C∗-algebras.

A multiplier ω determines a subgroup G that we will make use of later. The symmetry group
of ω is the subgroup

Sω = {
s ∈ G: ω(s, t) = ω(t, s) for all t ∈ G

}
.

The multiplier ω is called totally skew if Sω is trivial. Proposition 32 of [11] shows that, for
abelian G, C∗(G,ω) is simple when ω is totally skew. (The results of Green [11] that we use are
stated in terms of twisted covariance algebras, but may be easily translated to results concerning
twisted group algebras—see the remarks following the next example.)

Example 4.1. Let θ = [θij ] be an m × m skew-symmetric real matrix. An m-dimensional
noncommutative torus [21] is the universal C∗-algebra generated by m unitaries U1, . . . ,Um

satisfying the generalized Weyl-commutation relations

UjUi = e2πiθij UiUj .

A noncommutative torus may alternatively be regarded as a twisted group C∗-algebra of Zm.
Indeed, let ωθ be the multiplier given by

ωθ(a, b) = e−πiatθb

for all a, b ∈ Z
m. Let V be an ω-representation of Z

m and write ei for the canonical generators
of Z

m. Then the generators satisfy

Vej
Vei

= e2πiθij Vei
Vej

.

It follows that C∗(Zm,ωθ ) is the universal C∗-algebra generated by m unitaries satisfying the
same commutation relations as above. In other words, C∗(Zm,ωθ ) = Aθ . It is well known that
every twisted group C∗-algebra of Z

m is an m-dimensional noncommutative torus (see for ex-
ample §2.2 of [9]).

For the next lemma we will use a result of Green [11] to pass from a primitive quotient of a
twisted group algebra to a simple twisted group algebra. Since it was stated in terms of twisted
covariance algebras we will briefly explain the terminology and indicate how to translate the
result to the language of twisted group algebras.

A covariant system (H,A, T ) is a C∗-dynamical system (H,A,α) together with a homo-
morphism T of a normal subgroup N of H to the unitary group of the multiplier algebra of A,
satisfying

Ad T = α|N and αs

(
T (n)

) = T
(
sns−1)
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for n ∈ N and s ∈ H . Associated to such a covariant system is a twisted covariance algebra
C∗(H,A, T ). Proposition A1 of [17] explains how certain twisted covariant algebras may be
regarded as twisted group algebras. Briefly, when A = C (so H acts trivially), T takes values in
T and one defines a multiplier ω on H/N by

ω(sN, tN) = T
(
c(s)c(t)c(st)−1) for sN, tN ∈ H/N,

where c : H/N → H is a Borel section. What one concludes is that C∗(H,C, T ) is isomorphic
to C∗(H/N,ω) (consult [17] for details).

On the other hand, one may regard twisted group algebras as twisted covariance algebras. If
C∗(G,ω) is a twisted group algebra, let Gω be the universal extension corresponding to ω: as
a set Gω is just T × G and the multiplication is given by

(z, s)(w, t) = (
zwω(s, t), st

)
.

Let Tω be the identity map of T ⊂ Gω. Then C∗(Gω,C, Tω) is isomorphic to C∗(G,ω) (again,
see [17]).

Proposition 4.2. (See [11, Proposition 34(i)].) Let (H,C, T ) be a covariant system with T an
isomorphism of N onto T and assume that H/N is abelian (this is what Green calls a “reduced
abelian system”). Let Z be the center of H . Then there is a totally skew system (H ′,C, T ′) for
which H ′/N ′ ∼= H/Z and C∗(H,C, T )/P is isomorphic to C∗(H ′,C, T ′) for every primitive
ideal P of C∗(H,C, T ).

That (H ′,C, T ′) is totally skew means that the normal subgroup N ′ of H ′ is exactly the center
of H ′; equivalently, the corresponding multiplier on H ′/N ′ is totally skew.

Let us restate this in the form we will use below. If C∗(G,ω) is a twisted group algebra
with G abelian, then (Gω,C, Tω) is a reduced abelian system. The proposition asserts that there
is a totally skew multiplier σ on Gω/Z(Gω) ∼= G/Sω such that C∗(G/Sω,σ ) is isomorphic to
C∗(G,ω)/P for every primitive ideal P of C∗(G,ω).

We will also need a special case of a result of Poguntke that deals with general locally compact
groups. We state the full result below along with the simplifications that come with restricting to
discrete groups.

Proposition 4.3. (See [20, Corollary 6].) Let G be a locally compact abelian group, and let ω be
a measurable cocycle. The anti-symmetrization (x, y) 	→ ω(s, t)ω(t, s) of ω induces the struc-
ture of a quasi-symplectic space on G/Sω in the terminology of [15]. Suppose that the invariant
Inv(G/Sω) of this space (see below) contains Z

m for a certain m. Then the twisted group alge-
bra C∗(G,ω) is isomorphic to the tensor product of C(Ŝω), an m-dimensional noncommutative
torus and the algebra of compact operators on a Hilbert space H.

If we assume that G is finitely generated, the definition of Inv(G/Sω) [15, Definition 1.14]
indicates that Inv(G/Sω) contains the free abelian group with rank equal to that of G (see also
[15, Example 1.13]). The proof of Theorem 1 of [20] also shows that, when G is discrete, the
space H is separable.

Since decomposition rank is preserved under stable isomorphism (Corollary 3.9 of [13]), we
see why the decomposition rank of the twisted group algebra of a finitely generated abelian group
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may be estimated using the decomposition rank of noncommutative tori. This leads to our next
lemma.

Lemma 4.4. An m-dimensional noncommutative torus Aθ has decomposition rank at most
2m + 1.

Proof. If Aθ is simple, then it is an AT algebra by a theorem of Phillips [19], and therefore has
decomposition rank at most 1 (and in fact exactly 1 since it is not an AF algebra). Assume that
Aθ is not simple.

We will reduce the nonsimple case to the simple one using a continuous field argument. The-
orem 1.5 of [17] implies that the primitive ideal space of C∗(Zm,ωθ ) is homeomorphic to Ŝωθ .
By the Dauns–Hoffman theorem [2, IV.1.6.7], C∗(Zm,ωθ ) is a C(Ŝωθ )-algebra and the fibers are
its primitive quotients. To get the required estimate using Lemma 3.1, it is enough to show that
the primitive quotients of C∗(Zm,ωθ ) all have decomposition rank at most 1.

We first use Proposition 4.2. We obtain a totally skew multiplier σ on Z
m/Sωθ such that

C∗(Zm,ωθ )/P is isomorphic to C∗(Zm/Sωθ , σ ) for every primitive ideal P of C∗(Zm,ωθ ).
Next, applying Proposition 4.3 to the group Z

m/Sωθ and the totally skew multiplier σ , we get that
C∗(Zm/Sωθ , σ ) is stably isomorphic to a simple noncommutative torus. But stably isomorphic
C∗-algebras have the same decomposition rank [13, Corollary 3.9]. �

Let us restate a theorem mentioned in Section 2 before proving it.

Theorem 2.2. Let G be a countable, discrete group that is a central extension

1 → N → G → Q → 1

where N and Q are finitely generated abelian groups of ranks n and m, respectively. Then

drC∗(G) � (n + 1)
(
2m2 + 4m + 1

) − 1.

Proof. Theorem 1.2 of [17] implies that C∗(G) is isomorphic to the C∗-algebra of a continuous
field over the spectrum N̂ of C∗(N), and moreover that every fiber has the form C∗(Q,ω) for
some multiplier ω on Q. It is clear that we aim to use Lemma 3.1; to do so we only need to find
an upper bound for the decomposition rank of C∗(Q,ω).

The twisted group C∗-algebra C∗(Q,ω) is stably isomorphic to C(Ŝω) ⊗ Aθ , where Aθ is a
noncommutative torus of dimension at most m. This follows immediately from Proposition 4.3.

By Lemma 4.4,

drC∗(Q,ω) = dr
(
C(Ŝω) ⊗ Aθ

)
� (m + 1)(2m + 2) − 1,

again using [13, Corollary 3.9]. �
Finally, we prove Proposition 2.1. We recall the statement.

Proposition 2.1. If G ∈ G , then any generalized Bunce–Deddens algebra C(G̃) � G associated
with G has finite decomposition rank.
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Proof. Fix G ∈ G and a nested sequence (Li) of finite index, normal subgroups of G with trivial
intersection. Let A = C(G̃)�G (where G̃ is the profinite completion of G with respect to (Li)).
Fix also positive integers m and n and finitely generated abelian groups N and Q such that G is
a central extension as in (1) with N and Q of ranks n and m, respectively. Begin by rewriting A

as an inductive limit:

A = C(G̃) � G

∼= lim−→ C(G/Li) � G

∼= lim−→ C∗(Li) ⊗ Mri

(where ri = [G : Li]). For the first isomorphism we are using that C(G̃) ∼= lim−→ C(G/Li). For the
second isomorphism one can use a theorem of Green [24, Theorem 4.30].

Remark 3.2 of [13] estimates the decomposition rank of an inductive limit as at most the
limit inferior of the decomposition ranks of the limiting algebras. By Corollary 3.9 of [13],
decomposition rank is invariant under tensoring with matrix algebras. Hence

drA � lim dr(C∗(Li) ⊗ Mri ) = lim drC∗(Li).

Because N is a central subgroup of G ∈ G , Li is also a central extension of the form

1 → Ni → Li → Qi → 1

where Ni and Qi are finitely generated abelian groups of ranks ni � n and mi � m, respectively.
The result now follows from Theorem 2.2. �
Acknowledgments

The author would like to thank his advisor, Marius Dadarlat, for his support and advice, and
Larry Brown for a useful comment. The exposition has benefited from a careful reading by the
referee.

References

[1] Joel Anderson, William Paschke, The rotation algebra, Houston J. Math. 15 (1) (1989) 1–26, MR 1002078.
[2] Bruce Blackadar, Operator Algebras: Theory of C∗-Algebras and von Neumann Algebras, Operator Algebras and

Non-Commutative Geometry, III, Encyclopaedia Math. Sci., vol. 122, Springer-Verlag, Berlin, 2006, MR 2188261.
[3] Etienne Blanchard, Eberhard Kirchberg, Global Glimm halving for C∗-bundles, J. Operator Theory 52 (2) (2004)

385–420, MR 2120237.
[4] John W. Bunce, James A. Deddens, C∗-algebras generated by weighted shifts, Indiana Univ. Math. J. 23

(1973/1974) 257–271, MR 0341108.
[5] Marius Dadarlat, Guihua Gong, A classification result for approximately homogeneous C∗-algebras of real rank

zero, Geom. Funct. Anal. 7 (4) (1997) 646–711, MR 1465599.
[6] Siegfried Echterhoff, The K-theory of twisted group algebras, in: C∗-Algebras and Elliptic Theory II, in: Trends

Math., Birkhäuser, Basel, 2008, pp. 67–86, MR 2408136.
[7] George A. Elliott, The classification problem for amenable C∗-algebras, in: Proc. Internat. Congress Math.,

vols. 1, 2, Zürich, 1994, Birkhäuser, Basel, 1995, pp. 922–932, MR 1403992.
[8] George A. Elliott, Guihua Gong, On the classification of C∗-algebras of real rank zero. II, Ann. of Math. (2) 144 (3)

(1996) 497–610, MR 1426886.



J.R. Carrión / Journal of Functional Analysis 260 (2011) 2815–2825 2825
[9] George A. Elliott, Hanfeng Li, Strong Morita equivalence of higher-dimensional noncommutative tori. II, Math.
Ann. 341 (4) (2008) 825–844, MR 2407328.

[10] George A. Elliott, Andrew S. Toms, Regularity properties in the classification program for separable amenable
C∗-algebras, Bull. Amer. Math. Soc. (N.S.) 45 (2) (2008) 229–245, MR 2383304.

[11] Philip Green, The local structure of twisted covariance algebras, Acta Math. 140 (3–4) (1978) 191–250, MR
0493349.

[12] G.G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math. 91 (1) (1988) 147–201, MR
918241.

[13] Eberhard Kirchberg, Wilhelm Winter, Covering dimension and quasidiagonality, Internat. J. Math. 15 (1) (2004)
63–85, MR 2039212.

[14] Huaxin Lin, Classification of simple tracially AF C∗-algebras, Canad. J. Math. 53 (1) (2001) 161–194, MR
1814969.

[15] Armin Lüdeking, Detlev Poguntke, Cocycles on abelian groups and primitive ideals in group C∗-algebras of two
step nilpotent groups and connected Lie groups, J. Lie Theory 4 (1) (1994) 39–103, MR 1326951.

[16] Stefanos Orfanos, Generalized Bunce–Deddens algebras, Proc. Amer. Math. Soc. 138 (1) (2010) 299–308, MR
2550195.

[17] Judith A. Packer, Iain Raeburn, On the structure of twisted group C∗-algebras, Trans. Amer. Math. Soc. 334 (2)
(1992) 685–718, MR 1078249.

[18] Cornel Pasnicu, Tensor products of Bunce–Deddens algebras, in: Operators in Indefinite Metric Spaces, Scattering
Theory and Other Topics, Bucharest, 1985, in: Oper. Theory Adv. Appl., vol. 24, Birkhäuser, Basel, 1987, pp. 283–
288, MR 903079.

[19] N. Christopher Phillips, Every simple higher dimensional noncommutative torus is an AT algebra, arXiv:
math/0609783v1 [math.OA], September 2006.

[20] Detlev Poguntke, The structure of twisted convolution C∗-algebras on abelian groups, J. Operator Theory 38 (1)
(1997) 3–18, MR 1462012.

[21] Marc A. Rieffel, Noncommutative tori—A case study of noncommutative differentiable manifolds, in: Geometric
and Topological Invariants of Elliptic Operators, Brunswick, ME, 1988, in: Contemp. Math., vol. 105, Amer. Math.
Soc., Providence, RI, 1990, pp. 191–211, MR 1047281.

[22] Derek John Scott Robinson, A Course in the Theory of Groups, Grad. Texts in Math., vol. 80, Springer-Verlag, New
York, 1982, MR 648604.

[23] Mikael Rørdam, Classification of nuclear, simple C∗-algebras, in: Classification of Nuclear C∗-Algebras. Entropy
in Operator Algebras, in: Encyclopaedia Math. Sci., vol. 126, Springer, Berlin, 2002, pp. 1–145, MR 1878882.

[24] Dana P. Williams, Crossed Products of C∗-Algebras, Math. Surveys Monogr., vol. 134, Amer. Math. Soc., Provi-
dence, RI, 2007, MR 2288954.

[25] Wilhelm Winter, On topologically finite-dimensional simple C∗-algebras, Math. Ann. 332 (4) (2005) 843–878, MR
2179780.

[26] Wilhelm Winter, Joachim Zacharias, Completely positive maps of order zero, arXiv:0903.3290v1 [math.OA], March
2009.


	Classiﬁcation of a class of crossed product C*-algebras associated with residually ﬁnite groups
	Introduction
	Main results
	The decomposition rank of C(X)-algebras
	Continuous ﬁelds of twisted group algebras
	Acknowledgments
	References


