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Abstract. For separable C∗-algebras A and B, we define a topology on the
set [[A,B]] consisting of homotopy classes of asymptotic morphisms from A

to B. This gives an enrichment of the Connes–Higson asymptotic category

over topological spaces. We show that the Hausdorffization of this category is
equivalent to the shape category of Dadarlat. As an application, we obtain a

topology on the E-theory group E(A,B) with properties analogous to those of
the topology on KK(A,B). The Hausdorffized E-theory group EL(A,B) =

E(A,B)/{0} is also introduced and studied. We obtain a continuity result for

the functor EL( · , B), which implies a new continuity result for the functor
KL( · , B).
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Introduction

E-theory was defined by Connes and Higson in [7]. It is a concrete realization,
defined in terms of asymptotic morphisms, of the half-exact bifunctor first defined
by Higson in [15]. In parallel with KK-theory, this bifunctor from the category of
separable C∗-algebras (and ∗-homomorphisms) to the category of abelian groups is
stable, homotopy invariant, and possesses a composition product. In fact, for sepa-
rable C∗-algebras A and B, there is a natural transformation E(A,B)→ KK(A,B)
preserving the product structure that is an isomorphism whenever A is nuclear.
Unlike KK-theory, however, E-theory is half-exact on all extensions of separable
C∗-algebras. The theory played a prominent role in approaches to both the Baum–
Connes conjecture and classification theory for nuclear C∗-algebras soon after its
introduction [16, 18]. See [7, 2, 14] for more on E-theory and its applications.

In this paper, we define a topology on E(A,B) with properties analogous to
the ones satisfied by the topology on KK(A,B). With some restrictions on A and
B, the latter topology was first studied in depth by Brown [4] and Salinas [21]
in connection with quasidiagonal extensions—an early version is mentioned in the
work of Brown, Douglas, and Fillmore [5]. It was further developed by Schochet
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in [23, 24] before being defined and studied in general by Pimsner (unpublished)
and Dadarlat [9]. That all of these definitions coincide (in their respective settings)
relies on a characterization of convergence in terms of Pimsner’s condition (see
[9, Theorem 3.5]). The topology we define satisfies the E-theoretic version of this
condition.

Theorem A. For separable C∗-algebras A and B, there is a unique second count-
able topology on E(A,B) such that xn → x in E(A,B) if and only if there exists
y ∈ E(A,C(N†, B)) satisfying y(n) = xn for all n ∈ N and y(∞) = x, where
N† = N ∪ {∞} is the one-point compactification of the natural numbers.

This and other properties of the topology are found in Section 4. In partic-
ular, if A, B, and D are separable C∗-algebras, then E(A,B) is a topological
group and the product E(A,B) × E(B,D) → E(A,D) is continuous, generalizing
[23, Theorem 6.8] and in analogy with [9, Theorem 3.5].

The relevance of the closure of {0} was first highlighted in the work of Brown
on the UCT in the early 1980s [4]. When A satisfies the UCT, the closure of {0}
can be identified with the subgroup of Ext1

Z(K∗+1(A),K∗(B)) consisting of pure
extensions, as proved by Schochet in [24, Theorem 3.3], assuming nuclearity. The
nuclearity condition was removed by Dadarlat in [9, Section 4].

When A satisfies the UCT, the group KL(A,B) is defined as the quotient of
KK(A,B) by this subgroup, and this quotient group plays a central role in clas-
sifying ∗-homomorphisms, as first shown by Rørdam [19]. In particular, Rørdam
proved that two ∗-homomorphisms that are approximately unitarily equivalent in-
duce the same KL-class, while they might not induce the same KK-class. The
KL-groups remain an indispensable tool in the classification program for nuclear
C∗-algebras to this day (for example, see [12, 13, 27, 6]). Moreover, the KL-groups
capture the limiting behavior of the controlled KK-theory groups of Willett and
Yu [28, Theorem 1.2].

Without the UCT condition, Dadarlat defined KL(A,B) as the quotient of
KK(A,B) by the closure of {0}. We define the Hausdorffized E-theory group
EL(A,B) in an analogous way. This is a totally disconnected Polish group, just
like KL(A,B) (see Section 4.2). Further, the product on E-theory descends to a
continuous product on EL-theory. We also prove that two separable C∗-algebras
are E-equivalent if and only if they are EL-equivalent. This generalizes and gives a
new proof of [9, Corollary 5.2], stating that KL- and KK-equivalence coincide for
nuclear C∗-algebras, with an argument that avoids the use of the Kirchberg–Phillips
classification theorem.

We also examine the behavior of Hausdorffized E-theory under direct limits.
Milnor’s lim1-sequence provides compatibility of E-theory with direct limits in the
first variable: for an inductive system (An)∞n=1 of separable C∗-algebras, there is a
natural exact sequence

0 lim←−
1E(An, SB) E(lim−→An, B) lim←−E(An, B) 0

where SB = C0(R) ⊗ B denotes the suspension of B. (See [22, Theorem 7.1] for
a more general treatment.) It turns out that the lim←−

1 term is always mapped into

the closure of {0}, which leads to the continuity of the functor EL( · , B). As a
consequence, we obtain a new continuity result for KL.
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Theorem B. If (An)∞n=1 is an inductive system of separable C∗-algebras and B is
a separable C∗-algebra, then the natural map

EL
(

lim−→An, B
)
−→ lim←−EL(An, B)

is an isomorphism. In particular, if each An is nuclear, then the natural map

KL
(

lim−→An, B
)
−→ lim←−KL(An, B)

is an isomorphism.

While we have stated our main results in terms of E-theory, the main body of the
paper is actually concerned with the set [[A,B]] of homotopy classes of asymptotic
morphisms from A to B (see Section 1.1). As we remind the reader in Section 4.2,
E(A,B) is defined as [[SA⊗K, SB⊗K]], where K denotes the C∗-algebra of compact
operators on a separable infinite dimensional Hilbert space. However, the group
structure furnished by stabilizing and suspending is not relevant to our development
of the topology in Theorem A. The topology on [[A,B]] is introduced in Section 2,
and its Hausdorffization is studied in Section 3.

The various definitions of the topology on KK(A,B) are typically built using
representation theoretic pictures of KK-theory. In the absence of such a description
of E-theory, we opt for a new approach that employs the shape theoretic methods of
[8] and a generalization of Blackadar’s homotopy lifting property for semiprojective
C∗-algebras from [3] (see Theorem 1.7). Shape theory for C∗-algebras was first
introduced by Effros and Kaminker in [11] and refined by Blackadar in [1]. Building
on the techniques of [8], which related shape theory and E-theory, we prove the
following result. (See Section 4 for the relevant definitions.)

Theorem C. There is an equivalence between the shape category and the Haus-
dorffized asymptotic morphism category.

Finally, we give a brief heuristic description of the new methods developed in
this paper. Dadarlat showed in [8] that given a homotopy commuting diagram

· · · An−1 An An+1 · · · lim−→An

· · · Bn−1 Bn Bn+1 · · · lim−→Bn

≈

together with a distinguished choice of homotopy at each stage, there is a limiting

asymptotic morphism lim−→An
≈−→ lim−→Bn. We prove that this homotopy limit is inde-

pendent of the choice of homotopies up to Hausdorffization (Proposition 3.5). Once
restricted to the setting where the inductive systems are shape systems, this homo-
topy limit functor provides the equivalence in Theorem C. In fact, the systematic
use of this idea is behind many of the results in this paper.

Acknowledgements. The second author was partially supported by NSF Grant
DMS-2000129. Each author would like to thank the other’s university for their
hospitality during the visits where much of this project was completed.

1. Asymptotic morphisms and semiprojectivity

This preliminary section serves to set our notation and recall some results from
[8] relating asymptotic morphisms to shape theory. The only somewhat new result
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is Corollary 1.8, which is a slight variation of Blackadar’s result in [3, Corollary 4.3]
and has nearly the same proof.

1.1. Asymptotic morphisms. For C∗-algebras A and B, an asymptotic mor-

phism φ : A
≈−→ B is a collection of self-adjoint linear maps (φt : A→ B)t≥0, indexed

by the space R+ of non-negative real numbers, such that

(i) t 7→ φt(a) is continuous for all a ∈ A, and
(ii) lim

t→∞
‖φt(ab)− φt(a)φt(b)‖ for all a, b ∈ A.

Note that every ∗-homomorphism φ : A → B may be viewed as an asymptotic

morphism that is constant in t. If A, B, and D are C∗-algebras, φ : A
≈−→ B is

an asymptotic morphism, and ψ : B → D is a ∗-homomorphism, we may define an

asymptotic morphism ψ ◦ φ : A
≈−→ D by (ψ ◦ φ)t = ψ ◦ φt. Similarly, if ψ : D → A

is a ∗-homomorphism, we have an asymptotic morphism φ ◦ ψ : D
≈−→ B given by

(φ ◦ ψ)t = φt ◦ ψ.
We emphasize that the φt are not assumed to be bounded. However, as noted

in [7, p. 102] (see also [2, Proposition 25.1.3]), an asymptotic morphism is always
“asymptotically contractive” in the sense that

(iii) lim sup
t→∞

‖φt(a)‖ ≤ ‖a‖ for all a ∈ A.

It follows that any asymptotic morphism φ : A
≈−→ B induces a ∗-homomorphism

φas : A → Bas, where Bas = Cb(R+, B)/C0(R+, B) is the asymptotic algebra of
B. Conversely, given a ∗-homomorphism A → Bas and a self-adjoint linear lift

Φ: A→ Cb(R+, B), there is an induced asymptotic morphism φ : A
≈−→ B defined

by φt(a) = Φ(a)(t) for a ∈ A and t ∈ R+. Then Φ lifts φas.

Two asymptotic morphisms φ, ψ : A
≈−→ B are equivalent, written φ ∼= ψ, if

lim
t→∞

‖φt(a)− ψt(a)‖ = 0

for all a ∈ A. Note that φ ∼= ψ if and only if φas = ψas. We say φ and ψ are

asymptotically homotopic if there is an asymptotic morphism θ : A
≈−→ C([0, 1], B)

such that ev0 ◦ θ ∼= φ and ev1 ◦ θ ∼= ψ. We let [[φ]] denote the equivalence class of

an asymptotic morphism φ : A
≈−→ B under asymptotic homotopy and let [[A,B]]

denote the set of such equivalence classes.
There is no natural way of composing asymptotic morphisms, but there is a

well-defined composition up to asymptotic homotopy, as shown in [7, Proposi-
tion 4] (see also [2, Theorem 25.3.1]). The composition defined below extends the
usual composition of ∗-homomorphisms and, more generally, the composition of a
∗-homomorphism with an asymptotic morphism discussed above. This construc-
tion uses separability of the domain algebras and is the main reason separability
hypotheses arise in our results. (The statement in [2, Theorem 25.3.1] asks that all
three C∗-algebras be separable, but examining the proof shows that the separability
of D is not needed.)

Theorem 1.1. If A, B, and D are C∗-algebras with A and B separable and

φ : A
≈−→ B and ψ : B

≈−→ D are asymptotic morphisms, then there is a homeomor-
phism r0 : [0,∞) → [0,∞) such that for all homeomorphisms r : [0,∞) → [0,∞)
with r(t) ≥ r0(t) for all t ≥ 0, we have (ψr(t) ◦ φt)t≥0 is an asymptotic morphism.
Moreover, the homotopy equivalence class of this asymptotic morphism, written
[[ψ]] ◦ [[φ]], is independent of the choice of r.
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Following Connes and Higson [7], we consider the category AM, henceforth called
the asymptotic category, whose objects are separable C∗-algebras, whose morphisms
from A to B form the set [[A,B]], and whose composition is given by Theorem 1.1.

1.2. Semiprojectivity and shape systems. We will write (A,α) to denote an
inductive system of C∗-algebras

A1
α1−→ A2

α2−→ A3
α3−→ · · · .

As usual, for integers n > m ≥ 1, we write

αn,m = αn−1 ◦ · · · ◦ αm : Am → An.

For n ≥ 1, we also write αn,n = idAn
and α∞,n for the natural map An → lim−→ (A,α).

Recall from [1, Definition 2.10] that a ∗-homomorphism α : A0 → A between
separable C∗-algebras is semiprojective if whenever (B, β) is an inductive system
with each βn surjective and φ : A → lim−→(B, β) is a ∗-homomorphism, there are an

integer n ∈ N and a ∗-homomorphism φ̃ : A0 → Bn such that β∞,n ◦ φ̃ = φ ◦ α.
A shape system for a C∗-algebra A is an inductive system (A,α) such that each
αn is semiprojective and lim−→ (A,α) is isomorphic to A. Every separable C∗-algebra

admits a shape system (A,α); in fact, one may take each αn to be surjective. See
[1, Theorem 4.3].

If A, B, and D are separable C∗-algebras, α : A → B and β : B → D are
∗-homomorphisms, and either α or β is semiprojective, then β ◦ α is also semipro-
jective. We will use this to show every semiprojective ∗-homomorphism factors as
a composition of two semiprojective ∗-homomorphisms.

Lemma 1.2. If A0 and A are separable C∗-algebras and α : A0 → A is a semipro-
jective ∗-homomorphism, then there are a separable C∗-algebra A1 and semiprojec-
tive ∗-homomorphisms α0 : A0 → A1 and α1 : A1 → A such that α = α1 ◦ α0.

Proof. Fix a shape system (A′, α′) for A with each α′n surjective. Because α is
semiprojective, there are an integer n ≥ 1 and a ∗-homomorphism α̃ : A→ A′n such
that α = α′∞,n ◦ α̃. Define A1 = A′n+1, α0 = α′n ◦ α̃, and α1 = α′∞,n+1. Then α0

and α1 are semiprojective since α′n and α′n+1 are. �

Shape systems provide a convenient formalism for defining asymptotic mor-
phisms, as first noted in [8].

Definition 1.3. Given inductive systems (A,α) and (B, β), a strong homotopy

morphism (f, φ, h) : (A,α)
≈−→ (B, β) consists of a strictly increasing map f : N→ N

and sequences of ∗-homomorphisms

φ =
(
φ : An → Bf(n)

)∞
n=1

and h =
(
hn : A→ C([0, 1], Bf(n+1))

)∞
n=1

such that for all n ∈ N, ev0 ◦ hn = βf(n+1),f(n) ◦ φn and ev1 ◦ hn = φn+1 ◦ αn+1,n.
This can be visualized as a diagram

A1 A2 A3 · · ·

C([0, 1], Bf(2)) C([0, 1], Bf(3)) C([0, 1], Bf(4)) · · ·

Bf(1) Bf(2) Bf(3) · · ·

α1

φ1

h1

α2

φ2

h2

α3

φ3

h3

ev1

ev0

ev1

ev0

ev1

ev0

βf(2),f(1) βf(3),f(2) βf(4),f(3)
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with commuting triangles. A homotopy morphism of inductive systems is a pair
(f, φ) satisfying the above conditions for some sequence of homotopies h. In either
case, when f = idN, we will drop it from the notation, writing φ and (φ, h) in place
of (idN, φ) and (idN, φ, h).

Dadarlat showed in [8, Section 2] that a strong homotopy morphism has a ho-
motopy limit, defined as an asymptotic morphism on the corresponding inductive
limit algebras. We briefly recall the definition of this functor as it is central to this
paper.

Definition 1.4. Given a strong homotopy morphism

(f, φ, h) : (A,α)
≈−→ (B, β),

let A = lim−→ (A,α) and B = lim−→ (B, β). For n ∈ N, define Φn : An → Cb(R≥n, B) by

Φn(a)(t) = β∞,f(m+1)

(
hm
(
αm,n(a)

)
(t−m)

)
for m ≥ n and m ≤ t < m+ 1. If ρn : Cb(R≥n, B)→ Cb(R≥(n+1)) is the restriction
map, we have a commuting diagram

A1 A2 A3 · · · A

Cb(R≥1, B) Cb(R≥2, B) Cb(R≥3, B) · · · Bas

α1

Φ1

α2

Φ2

α3

Φ3 φas

ρ1 ρ2 ρ3

which induces a ∗-homomorphism φas : A → Bas. This, in turn, lifts to an asymp-

totic morphism φ : A
≈−→ B. We define h-lim−→ (f, φ, h) = φ, which is well-defined up

to equivalence (since φas is well-defined).

The homotopy limit satisfies the expected compatibility property with the se-
quence of morphisms defining it.

Proposition 1.5. If (f, φ, h) : (A,α)
≈−→ (B, β) is a strong homotopy morphism of

inductive systems with homotopy limit φ : A
≈−→ B, then [[φ◦α∞,n]] = [[β∞,f(n)◦φn]]

for all n ∈ N.

Proof. Given n ∈ N, define Θn : An → Cb(R≥n, C([0, 1], B)) by

Θn(a)(t)(s) = Φn(a)
(
s(t− n) + n

)
for a ∈ An, t ∈ R≥n, and s ∈ [0, 1]. The asymptotic morphism θn : A

≈−→ C([0, 1], B)
induced by Θn is the desired homotopy. �

The following result is due to Dadarlat in [8, Corollary 3.15].

Theorem 1.6. If (A,α) is a shape system with limit A and (B, β) is an inductive

system with limit B, then every asymptotic morphism φ : A
≈−→ B has the form

h-lim−→ (f, φ, h) for a suitable strong homotopy morphism (f, φ, h) of the inductive
systems.

Note that any C∗-algebra B is the limit of the inductive system (B, β) where
Bn = B and βn = idB for all n ∈ N. In this case, we will often abuse notation and

write (φ, h) : (A,α)
≈−→ B for a strong homotopy morphism (idN, φ, h).
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1.3. Homotopy stability. A separable C∗-algebraA is called semiprojective if idA
is semiprojective. Blackadar proved in [3, Corollary 4.3] that if φ, ψ : A → B are
∗-homomorphisms between C∗-algebras and are sufficiently close in the point-norm
topology and A is separable and semiprojective, then φ and ψ are homotopic (with
the bound depending only on A). This subsection is devoted to proving a relative
version of Blackadar’s result for semiprojective ∗-homomorphisms (Corollary 1.8)—
the proof is very similar. We begin with a lifting result similar to [3, Theorem 4.1].

Theorem 1.7. Let A0 and A be separable C∗-algebras and let α : A0 → A be a
semiprojective ∗-homomorphism. For every finite set F ⊆ A0 and ε > 0, there
are a finite set G ⊆ A and δ > 0 such that for all C∗-algebras B and E, surjec-
tive ∗-homomorphisms q : E → B, and ∗-homomorphisms φ, ψ : A → B such that
‖φ(a)− ψ(a)‖ < δ for all a ∈ G, if φ̃ : A → E is a ∗-homomorphism such that

q ◦ φ̃ = φ, then there is a ∗-homomorphism ψ̃ : A0 → E such that q ◦ ψ̃ = ψ ◦α and
‖φ̃(α(a))− ψ̃(a)‖ < ε for all a ∈ F .

Proof. Suppose the result is false and choose a finite set F ⊆ A0 and ε > 0 for
which the result fails. Let Gn ⊆ A be an increasing sequence of finite sets with
dense union and let δn > 0 be a decreasing sequence converging to 0. For each
n ≥ 1, choose C∗-algebras Bn and En, a surjective ∗-homomorphism qn : En → Bn,
∗-homomorphisms φn, ψn : A → Bn with ‖φ(a) − ψ(a)‖ < δn for all a ∈ Gn and a
∗-homomorphism φ̃n : A→ En with q ◦ φ̃n = φn such that for all ∗-homomorphisms
ψ̃n : A0 → En with q◦ψ̃n = ψn◦α, there is an a ∈ F such that ‖φ̃(α(a))−ψ̃(a)‖ ≥ ε.

Let B̂n =
∏
m≥nBm, Ên =

∏
m≥nEm, and q̂n =

∏
m≥n qm : Ên → B̂n. Let

βn : B̂n → B̂n+1 and γn : Ên → Ên+1 denote the projection maps. Let B̂ and Ê

denote the inductive limits of (B̂, β) and (Ê, γ), respectively, and let q̂ : Ê → B̂
denote the ∗-homomorphism induced by the q̂n. Finally, define Φn =

∏
m≥n φm,

Φ̃n =
∏
m≥n φ̃m, and Ψn =

∏
m≥n ψm, and let Φ,Ψ: A→ B̂ and Φ̃ : A→ Ê denote

the induced maps. Note that ‖φn(a)−ψn(a)‖ → 0 for all a ∈ A, and hence Φ = Ψ.
For n ≥ 1, consider the pullback

Pn = B̂1 ⊕B̂n
Ên = {(b, e) ∈ B̂1 ⊕ Ên : βn,1(b) = q̂n(e)},

and let pr
(n)
1 : Pn → B̂1 and pr

(n)
2 : Pn → Ên denote the projection maps. Let Jn

be the kernel of q̂n and let In be the kernel of pr
(n)
1 . There are canonical maps

θn : In → Jn and πn : Pn → Pn+1 such that the diagram

0 Jn Ên B̂n 0

0 In Pn B̂1 0

0 Jn+1 Ên+1 B̂n+1 0

0 In+1 Pn+1 B̂1 0

γn

q̂n

βn
θn ∼=

pr
(n)
1

pr
(n)
2 βn,1

q̂n+1

θn+1 ∼=

πn

pr
(n+1)
2

pr
(n+1)
1

βn+1,1
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commutes has exact rows. A diagram chase shows that each θn is an isomorphism
and each πn is surjective. Taking the inductive limit over n produces a diagram

0 I P B̂1 0

0 J Ê B̂ 0

θ∼=

pr
(∞)
1

pr
(∞)
2

β∞,1

q̂

that commutes; note that the rows are exact. A diagram chase shows the right-hand
square is a pullback.

The maps Ψ1 : A → B̂1 and Φ̃ : A → Ê induce a ∗-homomorphism ρ : A → P .
Because α is semiprojective, there are an integer n ≥ 1 and a ∗-homomorphism

ρ̃ : A0 → Pn such that π∞,n ◦ ρ̃ = ρ ◦ α. Write pr
(n)
2 ◦ ρ̃ =

∏
m≥n ψ̃m for ∗-homo-

morphisms ψ̃m : A0 → Em, m ≥ n. By construction, qm ◦ ψ̃m = ψm for all m ≥ n,
and limm→∞ ‖φ̃m(α(a))− ψ̃m(a)‖ = 0 for all a ∈ A0, giving a contradiction. �

The following homotopy stability property will be used frequently. The special
case when α0 = idA is [3, Corollary 4.3].

Corollary 1.8. Let A0 and A be separable C∗-algebras and let α : A0 → A be a
semiprojective ∗-homomorphism. There are a finite set G ⊆ A and δ > 0 such that
for all C∗-algebras B and all ∗-homomorphisms φ, ψ : A→ B, if ‖φ(a)−ψ(a)‖ < δ
for all a ∈ G, then φ ◦ α is homotopic to ψ ◦ α.

Proof. In the notation of Theorem 1.7, let F = ∅ and ε = 1, and choose G and δ
accordingly. Consider the surjective ∗-homomorphism q : C([0, 1], B)→ B⊕B given
by q(f) = (f(0), f(1)). Assume φ, ψ : A→ B are (G, δ)-close. The ∗-homomorphism
φ⊕ φ : A→ B ⊕B lifts to E = C([0, 1], B) and is (G, δ)-close to φ⊕ ψ : A→ B, so
by Theorem 1.7, (φ ⊕ ψ) ◦ α lifts to a ∗-homomorphism A0 → E. This lift is the
desired homotopy. �

2. The topology on [[A,B]]

Recall that for C∗-algebras A and B with A separable, [[A,B]] is the set of
homotopy classes of asymptotic morphisms from A to B. We will show that there
is a topology on [[A,B]] with properties analogous to those described in Theorem A
and for which the composition product is jointly continuous. The topology will be
defined in Section 2.1. Sections 2.2 and 2.3 will address the characterization of
convergence and the continuity of composition, respectively.

2.1. Definition of the topology. Before introducing the topology on [[A,B]],
we will need a few relatively standard results that provide homotopy factorization
of asymptotic morphisms through genuine ∗-homomorphisms in the presence of
semiprojectivity.

Lemma 2.1. Let A0, A, and B be C∗-algebras with A0 and A separable. If α : A0 →
A is a semiprojective ∗-homomorphism and φ : A

≈−→ B is an asymptotic morphism,

then there is an asymptotic morphism φ̃ : A0
≈−→ B such that φ̃ ∼= φ ◦ α and φ̃t is a

∗-homomorphism for all t ≥ 0.

Proof. For n ≥ 1, let ρn : Cb(R≥n, B) → Cb(R≥(n+1), B) be the restriction map

and identify the limit of this inductive system with Bas = Cb(R+, B)/C0(R+, B).
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Since α0 is semiprojective and each ρn is surjective, there are an integer n ≥ 1
and a ∗-homomorphism Φ: A0 → Cb(R≥n, B) such that ρ∞,n ◦Φ = φas ◦ α. Define

φ̃ : A
≈−→ B by φ̃t(a) = Φ(a)(t) for t ≥ n and φ̃t(a) = Φ(a)(n) for 0 ≤ t < n. By

construction, φ̃ ∼= φ ◦ α. �

For C∗-algebras A and B with A separable, we let H(A,B) ⊆ [[A,B]] denote the
asymptotic homotopy equivalence classes of ∗-homomorphisms A→ B.

Lemma 2.2. Let A0, A, and B be C∗-algebras with A0 and A separable. If α : A0 →
A is a semiprojective morphism and φ : A

≈−→ B is an asymptotic morphism, then
there is a ∗-homomorphism ψ : A0 → B such that [[ψ]] = [[φ ◦ α]]. In particular, α
induces a map

α∗ : [[A,B]]→ H(A0, B) ⊆ [[A0, B]].

Proof. Let φ̃ : A0
≈−→ B be given as in Lemma 2.1 and set ψ = φ̃0. For t ≥ 0, define

θt : A → C([0, 1], B) by θt(a)(s) = φ̃st(a) for all a ∈ A0 and s ∈ [0, 1]. Then θt is

an asymptotic homotopy between ψ and φ̃. Hence [[ψ]] = [[φ̃]] = [[φ ◦ α]]. �

We will use the maps in Lemma 2.2 to define the topology on [[A,B]].

Definition 2.3. Let A and B be C∗-algebras with A separable.

(i) We equip the set Hom(A,B) of ∗-homomorphisms A→ B with the point-
norm topology, so φn → φ if and only if ‖φn(a)− φ(a)‖ → 0 for all a ∈ A.

(ii) We equip the image H(A,B) of the natural map Hom(A,B) → [[A,B]]
with the quotient topology inherited from Hom(A,B).

(iii) We equip [[A,B]] with the weakest topology such that for every separable
C∗-algebra A0 and every semiprojective ∗-homomorphism α : A0 → A, the
map α∗ : [[A,B]]→ H(A0, B) given in Lemma 2.2 is continuous.

Note that the set H(A,B) carries two natural topologies: the quotient topology
from Hom(A,B) and the subspace topology from [[A,B]]. We will always use the
former topology on H(A,B). We do not know if these topologies coincide, but they
are related via the following straightforward result.

Proposition 2.4. If A and B are C∗-algebras with A separable, then the inclusion
map H(A,B)→ [[A,B]] is continuous.

Proof. It is enough to show that for every separable C∗-algebra A0 and semiprojec-
tive ∗-homomorphism α : A0 → A, the map α∗ : H(A,B)→ H(A0, B) is continuous.
This is immediate since the corresponding map α∗ : Hom(A,B) → Hom(A0, B) is
continuous. �

The next lemma is stated in [25, Theorem 2.3], where it is noted that it follows
from the closely related results in [1, Section 3]. We include the details as they are
omitted in [25].

Lemma 2.5. Let A and B be separable C∗-algebras and suppose B is the limit
of an inductive system (B, β). If α : A → B is a semiprojective ∗-homomorphism,
then there exist an integer n ≥ 1 and a ∗-homomorphism α̃ : A → Bn such that
β∞,n ◦ α̃ is homotopic to α.

Proof. Lemma 1.2 implies there are a separable C∗-algebra A1 and semiprojective
∗-homomorphisms α0 : A → A1 and α1 : A1 → B such that α = α1 ◦ α0. Now,
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[1, Theorem 3.1] provides an integer n ≥ 1 and a ∗-homomorphism α̃ : A → Bn
such that β∞,n ◦ α̃ is homotopic to α1 ◦ α0. �

The following result gives a slightly simpler description of the topology by re-
stricting the collection of semiprojective morphisms that need to be considered in
Definition 2.3.

Proposition 2.6. If A and B are C∗-algebras with A separable and (A,α) is a
shape system for A, then the topology on [[A,B]] is the weakest topology such that
for all n ≥ 1, the map α∗∞,n : [[A,B]]→ H(An, B) of Lemma 2.2 is continuous.

Proof. By the definition of the topology on [[A,B]], each of the maps α∗∞,n is
continuous. It suffices to show that if X is a topological space, f : X → [[A,B]],
and α∗∞,n ◦ f is continuous for all n ≥ 1, then f is continuous. To this end, we
must show α∗ ◦ f is continuous for all separable C∗-algebras A0 and semiprojective
∗-homomorphisms α : A0 → A. Fix such A0 and α. Using Lemma 2.5 and that α
is semiprojective, we obtain an integer n ≥ 1 and a ∗-homomorphism α̃ : A0 → An
such that α∞,n ◦ α̃ is homotopic to α. Then α∗ factors as

[[A,B]]
α∗∞,n−−−→ H(An, B)

α̃∗−−→ H(A0, B).

Since α∗∞,n ◦ f and α̃∗ are continuous, so is α∗ ◦ f . �

The following standard result allows us to replace asymptotic homotopies of
∗-homomorphisms with genuine homotopies in the presence of semiprojectivity.
When α = idA, this follows from [2, Proposition 25.1.7], for example. It will be
strengthened in Lemma 3.4.

Lemma 2.7. Let A0, A, and B be C∗-algebras with A0 and A separable and let
α : A → B be a semiprojective ∗-homomorphism. If φ, ψ : A → B are ∗-homo-
morphisms with [[φ]] = [[ψ]], then φ ◦ α and ψ ◦ α are homotopic.

Proof. Lemma 1.2 implies there are a separable C∗-algebra A1 and semiprojective
∗-homomorphisms α0 : A0 → A1 and α1 : A1 → A such that α = α1 ◦ α0. Use
Corollary 1.8 to produce a finite set G ⊆ A1 and δ > 0 such that if φ′, ψ′ : A1 → B
are ∗-homomorphisms with ‖φ′(a)−ψ′(a)‖ < δ for all a ∈ G, then φ′◦α0 and ψ′◦α0

are homotopic.
By the definition of asymptotic homotopy equivalence and Lemma 2.1, there is

an asymptotic morphism θ : A1
≈−→ C([0, 1], B) such that θt is a ∗-homomorphism

for all t ∈ R+, ev0 ◦ θ ∼= φ ◦ α1, and ev1 ◦ θ ∼= ψ ◦ α1. For some sufficiently large
t0 ∈ R+, we have ‖θt0(a)(0)− φ(α1(a))‖ < δ and ‖θt0(a)(1)−ψ(α1(a))‖ < δ for all
a ∈ G. By the choice of G and δ, φ ◦ α is homotopic to ev0 ◦ θt0 ◦ α0 and ψ ◦ α is
homotopic to ev1 ◦ θt0 ◦α0. Since ev0 ◦ θt0 ◦α0 and ev1 ◦ θt0 ◦α0 are homotopic, so
are φ ◦ α and ψ ◦ α. �

The following result and its corollary below will allow us to deduce structural
properties of the topology on asymptotic morphisms.

Proposition 2.8. Let A0, A, and B be C∗-algebras with A0 and A separable and
let α : A0 → A be a semiprojecive ∗-homomorphisms. The natural map

α∗ : H(A,B)→ H(A0, B)

factors through a discrete topological space. Moreover, if B is separable, then this
space may be taken to be countable.
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Proof. By Lemma 1.2, there are a separable C∗-algebra A1 and semiprojective
∗-homomorphisms α0 : A0 → A1 and α1 : A1 → A such that α = α1 ◦α0. By Corol-
lary 1.8, there are finite set G ⊆ A1 and δ > 0 such that for all ∗-homomorphisms
φ, ψ : A1 → B, if ‖φ(a) − ψ(a)‖ < δ for all a ∈ G, then φ ◦ α0 and ψ ◦ α0 are
homotopic.

Let ∼ be the equivalence relation on Hom(A1, B) generated by declaring φ ∼ ψ
if ‖φ(a) − ψ(a)‖ < δ for all a ∈ G. Let X = Hom(A1, B)/ ∼ be the quotient
space and let q : Hom(A1, B) → X be the quotient map. For all x ∈ X, the set
q−1(x) ⊆ Hom(A1, B) is open, and hence X is discrete. It follows immediately that
q is open. When B is separable, Hom(A,B) is second countable (being a separable
metrizable space), so X is also second countable and therefore countable.

If φ, ψ : A1 → B are ∗-homomorphisms with φ ∼ ψ, then φ ◦ α0 and ψ ◦ α0

are homotopic by the choice of G and δ. Therefore, there is a continuous map
f : X → H(A0, B) by f(q(φ)) = [[φ ◦ α0]] for all ∗-homomorphisms φ : A1 → B.
Now suppose φ, ψ : A→ B are ∗-homomorphisms with [[φ]] = [[ψ]]. By Lemma 2.7,
φ ◦ α1 and ψ ◦ α1 are homotopic, and in particular, φ ◦ α1 ∼ ψ ◦ α1. It follows
that there is a continuous map g : H(A,B) → X defined by g([[φ]]) = q(φ ◦ α1)
for all ∗-homomorphisms φ : A → B. By construction, for all ∗-homomorphisms
φ : A→ B, we have

f(g([[φ]])) = f(q(φ ◦ α1)) = [[φ ◦ α1 ◦ α0]] = [[φ ◦ α]],

and thus f ◦ g = α∗. �

Corollary 2.9. Let A0, A, and B be C∗-algebras with A0 and A separable and let
α : A0 → A be semiprojecive. The map

α∗ : [[A,B]]→ H(A0, B)

of Lemma 2.2 factors through a discrete topological space. Moreover, if B is sepa-
rable, then this space may be taken to be countable.

Proof. Using Lemma 1.2, there are a separable C∗-algebra A1 and semiprojective
∗-homomorphisms α0 : A0 → A1 and α1 : A1 → A such that α = α1 ◦ α0. Then α∗

factors as

[[A,B]]
α∗1−−→ H(A1, B)

α∗0−−→ H(A0, B).

The result follows from Proposition 2.8 applied to α0. �

The factorization result in the previous corollary allows us to prove countability
axioms for the space [[A,B]].

Theorem 2.10. If A and B are C∗-algebras with A separable, then [[A,B]] is first
countable. If, in addition, B is separable, then [[A,B]] is second countable.

Proof. Fix a shape system (A,α) for A. By Corollary 2.9, for each n ∈ N, there are a
discrete space Xn and continuous maps gn : [[A,B]]→ Xn and fn : Xn → H(An, B)

such that α∗∞,n = fn ◦ gn. Let φ : A
≈−→ B be an asymptotic morphism and let

Un = g−1
n (gn([[φ]])) for all n ∈ N. We will show the sets {Un : n ∈ N} form a

neighborhood basis for [[φ]] in [[A,B]].
For all n ∈ N, the set Un is open as gn is continuous and Xn is discrete. By

Proposition 2.6, open sets of the form (α∗∞,n)−1(Vn), for an open set Vn ⊆ H(An, B)

and n ∈ N, form a basis for [[A,B]]. Fix such an open set (α∗∞,n)−1(Vn) containing
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[[φ]]. Then gn([[φ]]) ∈ f−1
n (Vn), and hence Un ⊆ (α∗∞,n)−1(Vn), which proves the

claim.
When B is separable, we may take each Xn to be countable by Corollary 2.9.

Then
∞⋃
n=1

{g−1
n (xn) : xn ∈ Xn}

is a countable collection of open subsets of [[A,B]] containing a neighborhood basis
for each point in [[A,B]]. Hence [[A,B]] is second countable. �

2.2. Convergence in [[A,B]]. Since the topology on [[A,B]] is first countable
(Theorem 2.10), it is determined by its convergent sequences. This subsection
provides a characterization of sequential convergence in [[A,B]] analogous to the
characterization of convergence in E(A,B) stated in Theorem A and the one of con-
vergence in KK(A,B) given in [9, Theorem 3.5]. We begin with the following weak
continuity result for composition in [[A,B]]. We will later show in Theorem 2.15
that composition is in fact jointly continuous.

Lemma 2.11. Let A, B, and D be C∗-algebras with A separable. If (φn)∞n=1 is a
sequence in Hom(B,D) converging to φ and x ∈ [[A,B]], then [[φn]] ◦ x→ [[φ]] ◦ x
in [[A,D]].

Proof. It suffices to show that for each semiprojective ∗-homomorphism α : A0 → A,
we have α∗([[φn]] ◦ x) → α∗([[φ]] ◦ x) in H(A0, D). Note that for each n ∈ N,
α∗([[φn]] ◦ x) = [[φn]] ◦α∗(x) and α∗([[φ]] ◦ x) = [[φ]] ◦α∗(x). By Lemma 2.2, there
is a ∗-homomorphism ψ : A0 → B such that α∗(x) = [[ψ]]. Since φn ◦ ψ → φ ◦ ψ in
Hom(A0, D), the result follows. �

Write N for the natural numbers equipped with the discrete topology and let
N† = N∪{∞} be the one-point compactification of N. For C∗-algebras A andB with
A separable, y ∈ [[A,C(N†, B)]], and m ∈ N†, define y(m) = [[evm]] ◦ y ∈ [[A,B]].

Theorem 2.12 (Pimsner’s Condition). Suppose A and B be C∗-algebras with A
separable, (xm)∞m=1 is a sequence in [[A,B]], and x ∈ [[A,B]]. Then xm → x in
[[A,B]] if and only if there exists y ∈ [[A,C(N†, B)]] such that y(m) = xm for all
m ∈ N and y(∞) = x.

Proof. First suppose y ∈ [[A,C(N†, B)]] satisfies y(m) = xm for all m ∈ N and
y(∞) = x. Since evm → ev∞ in Hom(C(N†, B), B), Lemma 2.11 implies that
y(m)→ y(∞).

Conversely, suppose xm → x ∈ [[A,B]]. Fix a shape system (A,α) for A. Repre-

sent xm and x by strong homotopy morphisms (φ(m), h(m)) and (φ, h) from (A,α)
to B as in Theorem 1.6, where we are regarding B as the limit of a constant in-
ductive system as in the remarks following Theorem 1.6. Write φ(m) and φ for the

homotopy limits of (φ(m), h(m)) and (φ, h), respectively. Proposition 1.5 implies

[[φ
(m)
n ]] = [[φ(m) ◦α∞,n]] and [[φn]] = [[φ◦α∞,n]] for all m,n ∈ N. By Corollary 2.9,

the map

α∗∞,n+1 : [[A,B]]→ H(An+1, B)

factors through a discrete space. Therefore, for all n ∈ N, there is an mn ∈ N such

that for all m > mn, we have [[φ
(m)
n+1]] = [[φn+1]]. The semiprojectivity of αn and
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Lemma 2.7 imply that φ
(m)
n is homotopic to φn for all m > mn. Enlarging mn if

necessary, we may assume the sequence (mn)∞n=1 is strictly increasing.

For m,n ∈ N with m > mn, we have φn is homotopic to φ
(m)
n , and φ

(m)
n is

homotopic to φ
(m)
n+1 ◦ αn. Let k

(m)
n : An → C([0, 1], B) be a homotopy from φn to

φ
(m)
n+1 ◦ αn. For n ∈ N, define Φn : An → C(N†, B) by

Φn(a)(m) =

{
φ

(m)
n (a), 1 ≤ m ≤ mn

φn(a), mn < m ≤ ∞

for all a ∈ A and m ∈ N†. Further, define Hn : An → C([0, 1], C(N†, B)) by

Hn(a)(s)(m) =


h

(m)
n (a)(s), 1 ≤ m ≤ mn

k
(m)
n (a)(s), mn < m ≤ mn+1

hn(a)(s), mn+1 < m ≤ ∞

for all a ∈ A, s ∈ [0, 1], and m ∈ N†. Then (Φ, H) : (A,α) → C(N†, B) defines a
strong homotopy morphism. If y = h-lim−→ (Φ, H), we have y(m) = xm for m ∈ N
and y(∞) = x. �

2.3. Continuity of composition. We will use the characterization of convergent
sequences in Theorem 2.12 to strengthen the continuity result from Lemma 2.11 to
the one in Theorem 2.15. First we record two preliminary results.

The following proposition is routine. For C∗-algebras A and D, we write A⊗D
for the maximal tensor product of A and D.

Proposition 2.13. If A, B, and D are C∗-algebras and φ : A
≈−→ B is an asymp-

totic morphism, then there is an asymptotic morphism idD ⊗ φ : D ⊗A ≈−→ D ⊗B,
unique up to equivalence, that is determined by

(1) lim
t→∞

‖(idD ⊗ φ)t(d⊗ a)− d⊗ φt(a)‖ = 0

for all a ∈ A and d ∈ D. Moreover, the assignment φ 7→ idD ⊗ φ is natural in the
sense that if D1 and D2 are C∗-algebras and θ : D1 → D2 is a ∗-homomorphism,
then (θ ⊗ idB) ◦ (idD1

⊗ φ) ∼= (idD2
⊗ φ) ◦ (θ ⊗ idA).

Proof. For uniqueness, note that if ψ,ψ′ : D ⊗A ≈−→ D ⊗B satisfy

lim
t→0
‖ψ(d⊗ a)− d⊗ φ(a)‖ = lim

t→0
‖ψ′(d⊗ a)− d⊗ φ(a)‖ = 0

for all a ∈ A and d ∈ D, then ‖ψt(c)− ψ′t(c)‖ → 0 for all c in the algebraic tensor
product of D and A. Using the asymptotic contractivity of ψ and ψ′, this also
holds for all c ∈ D ⊗A, so ψ ∼= ψ′.

For existence, define ρ : D⊗Cb(R+, B)→ Cb(R+, D⊗B) by ρ(d⊗f)(t) = d⊗f(t).
Then ρ restricts to an isomorphism from D ⊗ C0(R+, B) to C0(R+, D ⊗ B), so ρ
induces a ∗-homomorphism ρ̄ : D⊗Bas → (D⊗B)as. Let idD⊗φ be an asymptotic
morphism lifting ρ̄◦(idD⊗φas). The naturality follows from the naturality of tensor
products and ρ. �

Specializing to the case when D is commutative gives the following result. It is
not clear to us whether the map φ̄ below is unique (up to equivalence), but only
the existence of such a map φ̄ will be needed.
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Corollary 2.14. If A and B are C∗-algebras, X is a locally compact Hausdorff

space, and φ : A
≈−→ B is an asymptotic morphism, then there is an asymptotic

morphism φ̄ : C0(X,A)
≈−→ C0(X,B) such that evx ◦ φ̄ ∼= φ ◦ evx for all x ∈ X.

Proof. Define isomorphisms

ψA : C0(X)⊗A→ C0(X,A) and ψB : C0(X)⊗B → C0(X,B)

by ψA(f ⊗ a)(x) = f(x)a and ψB(f ⊗ b)(x) = f(x)b for f ∈ C0(X), a ∈ A, b ∈ B,
and x ∈ X. Then define

φ̄ = ψB ◦ (idC0(X) ⊗ φ) ◦ ψ−1
A : C0(X,A)

≈−→ C0(X,B).

The result follows from the naturality of the tensor product in Proposition 2.13
applied to θ = evx : C0(X)→ C. �

Finally, we prove the joint continuity of composition.

Theorem 2.15. If A, B, and D are C∗-algebras with A and B separable, then the
composition [[A,B]]× [[B,D]]→ [[A,D]] is jointly continuous.

Proof. By Theorem 2.10, both [[A,B]] and [[B,D]] are first countable, and hence so
is [[A,B]]× [[B,D]]. So it suffices to show composition is sequentially continuous.
Suppose xn → x in [[A,B]] and yn → y in [[B,D]]. By Theorem 2.12, there are

asymptotic morphisms φ : A
≈−→ C(N†, B) and ψ : B

≈−→ C(N†, D) such that

[[evn ◦ φ]] =

{
xn n <∞
x n =∞

and [[evn ◦ ψ]] =

{
yn n <∞
y n =∞

for all n ∈ N†.
After identifying C(N†, C(N†, D)) with C(N† × N†, D), Corollary 2.14 provides

an asymptotic morphism ψ̄ : C(N†, B)→ C(N† × N†, D) such that

evm,n ◦ ψ̄ ∼= evm ◦ ψ ◦ evn

for all m,n ∈ N†. Let z = [[ψ̄]] ◦ [[φ]] ∈ [[A,C(N† × N†, D)]]. Then

[[evn,n]] ◦ z =

{
yn ◦ xn n <∞
y ◦ x n =∞

for n ∈ N†. Since evn,n → ev∞,∞ in Hom(C(N† × N†, D), D), Lemma 2.11 implies
yn ◦ xn → y ◦ x. �

3. Hausdorffized asymptotic morphisms

The topology on [[A,B]] given in Definition 2.3 is often non-Hausdorff. In Sec-
tion 3.1, we consider a quotient of [[A,B]] that is Hausdorff and show that the
composition descends to a continuous composition on the quotient. Further prop-
erties of the quotient are established in Section 3.2, and a compatibility result with
inductive limits in the spirit of Theorem B is given in Section 3.3.
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3.1. The Hausdorffized asymptotic category. Every topological space X ad-
mits a universal T0 quotient space known as the Kolmogorov quotient. While this
is typically non-Hausdorff, we will show that the Kolmogorov quotient of the space
[[A,B]] of asymptotic morphisms is always a Hausdorff space (Theorem 3.7). Ele-
ments of this quotient (defined formally below) will be the morphisms of the Haus-
dorffized asymptotic category.

Definition 3.1. Let A and B be C∗-algebras with A separable. For x, y ∈ [[A,B]],
write x ∼Hd y in [[A,B]] if the singletons {x} and {y} have the same closure. Then
∼Hd is an equivalence relation. We define the space of Hausdorffized asymptotic
morphisms, written [[A,B]]Hd, to be the quotient space [[A,B]]/∼Hd.

Note that the quotient map [[A,B]] → [[A,B]]Hd induces a bijection on open
sets, and in particular, the quotient map is open. As we now show, this observation
implies that the composition of asymptotic morphisms descends to a composition
on the quotient spaces.

Proposition 3.2. If A, B, and D are C∗-algebras such that A and B separa-
ble, then the composition [[A,B]] × [[B,D]] → [[A,D]] induces a continuous map
[[A,B]]Hd × [[B,D]]Hd → [[A,D]]Hd, written (x, y) 7→ y ◦ x.

Proof. Consider the quotient maps

q : [[A,B]]→ [[A,B]]Hd, q
′ : [[B,D]]→ [[B,D]]Hd, and q′′ : [[A,D]]→ [[A,D]]Hd.

If x, y ∈ [[A,B]] and x′, y′ ∈ [[B,D]] with q(x) = q(y) and q′(x′) = q′(y′), then the
constant sequences x and x′ converge to y and y′, respectively. By the continuity
of composition (Theorem 2.15), the constant sequence x′ ◦ x converges to y′ ◦ y.
Similarly, the constant sequence y′ ◦y converges to x′ ◦x. These convergences imply
q′′(x′ ◦ x) = q′′(y′ ◦ y). Therefore, the composition on the Kolmogorov quotients is
well-defined. Since q and q′ are open, so is q × q′. Hence q × q′ is a quotient map,
and the continuity of composition on the Kolmogorov quotients follows. �

Definition 3.3. The Hausdorffized asymptotic category AMHd is the category with
objects given by separable C∗-algebras, the morphisms from A to B given by the
set [[A,B]]Hd, and the composition given by Proposition 3.2.

In Section 4, we prove that the category AMHd is equivalent to the shape category
considered in [8] (Theorem 4.3). As a consequence, isomorphism in the category
AMHd (and in AM) coincides with shape equivalence of separable C∗-algebras.

The following lemma gives a strengthening of Lemma 2.7, weakening the hy-
pothesis from agreement in [[A,B]] to agreement in [[A,B]]Hd. We record it here
for use in Section 4.

Lemma 3.4. Let A0, A, and B be C∗-algebras with A0 and A separable and let
α : A0 → A be a semiprojective ∗-homomorphism. If φ, ψ : A→ B are ∗-homomor-
phisms with [[φ]]Hd = [[ψ]]Hd, then φ ◦ α and ψ ◦ α are homotopic.

Proof. By Lemma 1.2, there are separable C∗-algebras A1 and A2 and semiprojec-
tive ∗-homomorphisms α0 : A0 → A1, α1 : A1 → A2 and α2 : A2 → A such that
α = α2 ◦ α1 ◦ α0. Let G ⊆ A2 and δ > 0 be given by applying Corollary 1.8 to α1.

From [[φ]]Hd = [[ψ]]Hd and Theorem 2.12, there is an asymptotic morphism

η : A
≈−→ C(N†, B) with [[ev∞ ◦ η]] = [[ψ]] and [[evn ◦ η]] = [[φ]] for all n ∈ N. By

Lemma 2.2, there exists a ∗-homomorphism η̃ : A2 → C(N†, B) with [[η̃]] = [[η◦α2]].
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Therefore, [[ev∞ ◦ η̃]] = [[ψ ◦ α2]] and [[evn ◦ η̃]] = [[φ ◦ α2]] for all n ∈ N. Choose
N ∈ N so large that ‖(evN ◦ η̃)(a) − (ev∞ ◦ η̃)(a)‖ < δ for all a ∈ G. The choice
of G and δ implies that evN ◦ η̃ ◦ α1 is homotopic to ev∞ ◦ η̃ ◦ α1. Therefore,
[[φ ◦ α2 ◦ α1]] = [[ψ ◦ α2 ◦ α1]]. Finally, Lemma 2.7 implies that φ ◦ α2 ◦ α1 ◦ α0 is
homotopic to ψ ◦ α2 ◦ α1 ◦ α0. �

3.2. Basic properties of [[A,B]]Hd. Shape systems and strong homotopy mor-
phisms have proved useful in the study of asymptotic morphisms. They will be
equally powerful in the study of the Hausdorffized asymptotic category. The follow-
ing gives a formal statement of the claim made in the remarks following Theorem C
that Dadarlat’s homotopy limit functor is independent of the choice of homotopies
up to Hausdorffization.

Proposition 3.5. Let (A,α) and (B, β) be inductive systems of C∗-algebras with
limits A and B and assume each An is separable. Let

(f, φ, hφ), (g, ψ, hψ) : (A,α)→ (B, β)

be strong homotopy morphisms with homotopy limits φ, ψ : A
≈−→ B. If β∞,f(n) ◦φn

and β∞,g(n) ◦ ψn are homotopic for all n ∈ N, then [[φ]]Hd = [[ψ]]Hd.

Proof. After replacing the ∗-homomorphisms φn and ψn with β∞,f(n) ◦ φn and

β∞,g(n) ◦ ψn and the homotopies hφn and hψn with (idC([0,1]) ⊗ β∞,f(n+1)) ◦ hφn and

(idC([0,1]) ⊗ β∞,g(n+1)) ◦ hψn , we may assume that Bn = B and βn = idB for all
n ∈ N and f = g = idN. Hence, after changing notation, we have strong homotopy

morphisms (φ, hφ), (ψ, hψ) : (A,α) → B with homotopy limits φ, ψ : A
≈−→ B such

that φn and ψn are homotopic for all n ∈ N.
For n ∈ N, we have φn is homotopic to both ψn and φn+1 ◦ αn. Consider a

homotopy kn : An → C([0, 1], B) from ψn to φn+1 ◦ αn. Define a strong homotopy
morphism (θ, l) : (A,α)→ C(N†, B) by

θn(a)(m) =

{
φn(a) m < n

ψn(a) m ≥ n

and

ln(a)(m)(s) =


hφn(a)(s) m < n

kn(a)(s) m = n

hψn(a)(s) m > n

for all n ∈ N, m ∈ N†, a ∈ A, and s ∈ [0, 1]. Let θ = h-lim−→ (θ, l) : A
≈−→ B and

note that [[evm ◦ θ]] = [[φ]] for m ∈ N and [[ev∞ ◦ θ]] = [[ψ]]. By Theorem 2.12,
it follows that [[ψ]] belongs to the closure of {[[φ]]}. By symmetry, [[φ]] belongs to
the closure of {[[ψ]]}, and hence [[φ]]Hd = [[ψ]]Hd. �

The following result will be used to produce a projective limit decomposition of
the space [[A,B]]Hd in the proof of Theorem 3.7, which in particular, will be used
to prove [[A,B]]Hd is Hausdorff.

Lemma 3.6. If A0, A, and B are C∗-algebras with A0 and A separable, α : A0 → A
is a semiprojective ∗-homomorphism, and x, y ∈ [[A,C(N†, B)]] with x(m) = y(m)
for all m ∈ N†, then x ◦ [[α]] = y ◦ [[α]].
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Proof. By two applications of Lemma 1.2, we may factor α as a composition

A0 A1 A2 A
α0 α1 α2

where A1 and A2 are separable C∗-algebras and α0, α1, and α2 are semiprojective
∗-homomorphisms. Lemma 2.2, provides ∗-homomorphisms θ, ρ : A2 → C(N†, B)
such that [[θ]] = x◦ [[α2]] and [[ρ]] = y ◦ [[α2]]. In particular, [[evm ◦ θ]] = [[evm ◦ρ]]
for all m ∈ N†. Lemma 2.7 now implies that for all m ∈ N†, evm◦θ◦α1 is homotopic
to evm ◦ ρ ◦ α1; let hm : A1 → C([0, 1], B) be such a homotopy.

By, Corollary 1.8 there are a finite set G ⊆ A1 and δ > 0 such that if D is a
C∗-algebras and φ, ψ : A1 → D are ∗-homomorphisms with ‖φ(a) − ψ(a)‖ < δ for
all a ∈ G, then φ ◦ α0 and ψ ◦ α0 are homotopic. Fix m0 ∈ N such that

‖θ(α1(a))(m)− h∞(a)(0)‖ < δ and ‖ρ(α1(a))(m)− h∞(a)(1)‖ < δ

for all a ∈ G and m ≥ m0. Define D = C(N†≥m0
, B) and φ, ψ : A1 → D by

φ(a)(m) = θ(α1(a))(m) and ψ(a)(m) = θ(α1(a))(m) for all a ∈ A1 and m ∈ N†
with m ≥ m0. By the choice of G and δ, φ ◦ α0 and ψ ◦ α0 are homotopic; let
k : A→ C([0, 1], D) be such a homotopy.

Finally, define a homotopy h : A0 → C([0, 1], C(N†, B)) by

h(a)(s)(m) =

{
hm(α0(a))(s) m < m0

k(a)(s)(m) m ≥ m0

for all a ∈ A0, s ∈ [0, 1], and m ∈ N†. Then h defines a homotopy from θ ◦ α1 ◦ α0

to ρ ◦ α1 ◦ α0. Therefore,

x ◦ [[α]] = [[θ ◦ α1 ◦ α0]] = [[ρ ◦ α1 ◦ α0]] = y ◦ [[α]],

as required. �

The following result establishes the main properties of the topology on the space
of (Hausdorffized) asymptotic morphisms.

Theorem 3.7. If A and B are C∗-algebras with A separable, then [[A,B]]Hd is a
projective limit of discrete topological spaces. These may be taken to be countable
if B is separable. In particular, [[A,B]]Hd is totally disconnected and completely
metrizable, and it is separable if B is separable. Moreover, if (A,α) is a shape
system for A, then the maps α∗∞,n : [[A,B]] → H(An, B) of Lemma 2.2 induce a
homeomorphism

[[A,B]]Hd lim←− (H(An, B), α∗n).
∼=

Proof. Fix a shape system (A,α) for A. For n ∈ N, Proposition 2.8 gives a dis-
crete space Xn (which we may take to be countable if B is separable) and con-
tinuous maps gn+1 : H(An+1, B) → Xn and fn : Xn → H(An, B) such that for all
∗-homomorphisms φ : An+1 → B, fn(gn+1([[φ]])) = [[φ ◦ αn]]. Then there is a
commuting diagram

· · · H(A3, B) H(A2, B) H(A1, B)

· · · X3 X2 X1

α∗3

g4

α∗2

g3

α∗1

g2

g3◦f3

f3

g2◦f2

f2 f1
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in the category of topological spaces. It follows that

lim←− (H(An, B), α∗n) ∼= lim←− (Xn, gn ◦ fn).

Therefore, we only need to prove the final part of the theorem.
The maps α∗∞,n : [[A,B]]→ H(An, B) induce a continuous map

α∗ : [[A,B]]→ lim←− (H(An, B), α∗n),

and, since the inverse limit is Hausdorff (and, in particular, T0), α∗ factors through
a continuous map

ᾱ∗ : [[A,B]]Hd → lim←− (H(An, B), α∗n).

We will show that ᾱ∗ is a homeomorphism.

First we prove that ᾱ∗ is injective. Suppose that φ, ψ : A
≈−→ B are asymptotic

morphisms with α∗([[φ]]) = α∗([[ψ]]). By Theorem 1.6, there are strong homotopy
morphisms (φ, h), (ψ, k) : (A,α) → B with homotopy limits φ and ψ, respectively.
For each n ∈ N,

[[φn+1]] = [[φ ◦ α∞,n+1]] = [[ψ ◦ α∞,n+1]] = [[ψn+1]],

where the middle inequality follows from α∗([[φ]]) = α∗([[ψ]]) and the outer two
equalities follow from Proposition 1.5. By the definition of a strong homotopy mor-
phism of inductive systems, φn+1 ◦αn and ψn+1 ◦αn are homotopic to φn and ψn,
respectively. Also, by Lemma 2.7, φn+1◦αn and ψn+1◦αn are homotopic. Concate-
nating these homotopies shows that φn and ψn are homotopic. Then Proposition 3.5
implies [[φ]]Hd = [[ψ]]Hd, so ᾱ∗ is injective.

Second, we prove surjectivity. Let (φn : An → B)∞n=1 be a sequence of ∗-homo-
morphisms such that [[φn]] = [[φn+1 ◦ αn]] for all n ∈ N. For n ≥ N , Lemma 2.7
implies φn+1 ◦ αn is homotopic to φn+2 ◦ αn+2,n. If hn : An → C([0, 1], B) denotes
such a homotopy, then the sequences (φn+1 ◦ αn)∞n=1 and (hn)∞n=1 form a strong

homotopy morphism (A,α) → B. If φ : A
≈−→ B denotes the homotopy limit of

these sequences, then Proposition 1.5 implies [[φ ◦ α∞,n]] = [[φn+1 ◦ αn]] = [[φn]]
for all n ∈ N. So α∗ is surjective, and hence so is ᾱ∗.

It remains to prove continuity of the inverse of ᾱ∗. To this end, consider
x ∈ [[A,B]] and a sequence (xm)∞m=1 ⊆ [[A,B]] such that α∗∞,n(xm)→ α∗∞,n(x) in
H(An, B) for all n ∈ N. By Proposition 2.4, α∗∞,n(xm) → α∗∞,n(x) in [[An, B]]

for all n ∈ N. Then by Theorem 2.12, there is a y′n+1 ∈ [[An+1, C(N†, B)]]
such that y′n+1(m) = α∗∞,n+1(xm) for m ∈ N and y′n+1(∞) = α∗∞,n+1(x). De-
fine yn = y′n+1 ◦ [[αn]] for n ∈ N. Note that y′n+1(m) = y′n+2(m) ◦ [[αn+1]] for
all m ∈ N, so Lemma 3.6 implies yn = yn+1 ◦ [[αn]]. Also, Lemma 2.2 implies
yn ∈ H(An, C(N†, B)) ⊆ [[An, C(N†, B)]] for all n ∈ N. The surjectivity of α∗,
applied with C(N†, B) in place of B, implies there is a y ∈ [[A,C(N†, B)]] such that
α∗∞,n(y) = yn for all n ∈ N. For m ∈ N† and n ∈ N, we have α∗∞,n(y(m)) = yn(m).
So the injectivity of ᾱ∗ implies y(m) ∼Hd xm for all m ∈ N and y(∞) ∼Hd x.
Therefore, xn → x in [[A,B]]Hd. Hence ᾱ∗ is a homeomorphism. �

3.3. Compatibility with direct limits. The remainder of the section is devoted
to proving the continuity of the functor [[ · , B]]Hd on separable C∗-algebras (Theo-
rem 3.10). When restricting to shape systems, this continuity result follows easily
from the projective limit decomposition in Theorem 3.7 and the factorization result
in Lemma 2.2. The general case will reduce to this case by approximating a given
inductive system by a shape system with the same limit—the precise statement
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needed is given in Lemma 3.9. We start with the following approximation lemma,
which is a typical application of semiprojectivity.

Lemma 3.8. Suppose (A,α) is a shape system with limit A and (B, β) is an in-
ductive system with limit B such that each βn is surjective. For n ∈ N, let Fn ⊆ An
be a finite set and let εn > 0. If φ : A→ B is a ∗-homomorphism, then there are a
strictly increasing function f : N→ N and ∗-homomorphisms φn : An → Bf(n) such
that the diagram

A1 A2 A3 · · · A

Bf(1) Bf(2) Bf(3) · · · B

α1

φ1

α2

φ2

α3

φ3 φ

βf(2),f(1) βf(3),f(2) βf(4),f(3)

commutes up to homotopy,

max
a∈Fn

‖βf(n+1),f(n)(φn(a))− φn+1(αn(a))‖ < εn,

and φ ◦ α∞,n = β∞,f(n) ◦ φn for all n ∈ N.

Proof. For n ∈ N, Corollary 1.8 and the semiprojectivity of αn imply there are a
finite set Gn+1 ⊆ An+1 and δn+1 > 0 such that for all C∗-algebras D and ∗-homo-
morphisms θ, ρ : An+1 → D, if ‖θ(a)− ρ(a)‖ < δn+1 for all a ∈ Gn+1, then θ ◦αn is
homotopic to ρ ◦ αn. By enlarging the sets Gn and decreasing δn, we may assume
αn(Fn) ⊆ Gn+1 and δn+1 < εn for all n ∈ N.

It suffices to construct a strictly increasing function f : N → N and ∗-homo-
morphisms ψn+1 : An+1 → Bf(n) such that

max
a∈Gn+1

‖βf(n+1),f(n)(ψn+1(a))− ψn+2(αn+1(a))‖ < δn+1

and φ ◦ α∞,n+1 = β∞,f(n) ◦ ψn+1. Indeed, the ∗-homomorphisms φn = ψn+1 ◦ αn
will satisfy the conditions of the lemma.

Since α∞,2 : A2 → B is semiprojective, there are f(1) ∈ N and a ∗-homomorphism
ψ2 : A2 → Bf(1) such that β∞,f(1) ◦ ψ2 = φ ◦ α∞,2. Assume f(1), . . . , f(n) and
ψ2, . . . , ψn+1 have been constructed. Because α∞,n+2 is semiprojective, there are
f ′(n+ 1) ∈ N and a ∗-homomorphism ψ′n+2 : An+2 → Bf ′(n+1) so that

β∞,f ′(n+1) ◦ ψ′n+2 = φ ◦ α∞,n+2.

Then β∞,f(n) ◦ ψn+1 = β∞,f ′(n+1) ◦ ψ′n+2 ◦ αn+1, and hence

lim
m→∞

‖βm,f(n)(ψn+1(a))− βm,f ′(n+1)(ψ
′
n+2(αn+1(a)))‖ = 0.

Therefore, we may find f(n + 1) ∈ N with f(n + 1) > max{f(n), f ′(n + 1)} such
that

max
a∈Gn+1

‖βf(n+1),f(n)(ψn+1(a))− βf(n+1),f ′(n+1)(ψ
′
n+2(αn(a)))‖ < δn+1.

Define ψn+2 = βf(n+1),f ′(n+1) ◦ ψ′n+2. �

Applying the previous lemma inductively (and taking care with the estimates)
yields the following approximation result. This allows us to replace a given inductive
system with a shape system with the same limit.
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Lemma 3.9. If (A,α) is an inductive system of separable C∗-algebras with limit
A, then there is a diagram

A1
1 A1

2 A1
3 · · ·

A2
1 A2

2 A2
3 · · ·

A3
1 A3

2 A3
3 · · ·

A1 A2 A3 · · · A

α1
1

β1
1

γ1

α1
2

β1
2

α1
3

β1
3

α2
1

β2
1

α2
2

β2
2

γ2

α2
3

β2
3

α3
1

β3
1

α3
2

β3
2

α3
3

β3
3

γ3

..
.

..
.

..
. . . .

α1 α2 α3

of C∗-algebras and ∗-homomorphisms that commutes up to homotopy and satisfies
the following conditions:

(i) for all n ∈ N, the nth column
(
(Amn , β

m
n )
)∞
m=1

is a shape system for An;

(ii) the diagonal
(
(Ann, γn)

)∞
n=1

is a shape system for A;

(iii) for all n,m ∈ N, αn ◦ β∞,mn = β∞,mn+1 ◦ αmn ;
(iv) for all n ∈ N, γ∞,n = α∞,n ◦ β∞,nn .

Proof. The C∗-algebras Amn and the ∗-homomorphisms αmn and βmn will be con-
structed by induction on n and we will define γn = βnn+1 ◦ αnn. In order to account
for the diagonal inductive limit, we will also arrange for each βmn to be surjective
and for each square to approximately commute. In more detail, we arrange for
finite sets Fmn ⊆ Amn and finite sets Gn,j ⊆ Ann for j,m, n ∈ N such that

(v) αmn (Fmn ) ⊆ Fmn+1 and βmn (Fmn ) ⊆ Fm+1
n for all m,n ∈ N;

(vi) Gn,j ⊆ Gn,j+1 and γn(Gn,j) ⊆ Gn+1,j for all j, n ∈ N;
(vii)

⋃∞
j=1 Gn,j is dense in Ann for all n ∈ N;

(viii) Gn,n ⊆ Fnn ;

(ix) max
a∈Fm

n

‖αm+1
n (βmn (a))− βmn+1(αmn (a))‖ < 2−(n+m) for all m,n ∈ N.

Let
(
(Am1 , β

m
1 )
)∞
m=1

be a shape system for A1 such that each βm1 is surjective

(see [1, Theorem 4.3]). Choose any increasing sequence of finite subsets (G1,j)
∞
j=1

of A1
1 with dense union, and, for m ∈ N, define Fm1 = βm,11 (G1,1). Assume n ∈ N

and the first n columns have been constructed. Let
(
(Amn+1, β

m
n+1)

)∞
m=1

be a shape

system for An+1. After passing to a subsequence of
(
(Amn+1, β

m
n+1)

)∞
m=1

, Lemma 3.8

provides the maps αmn satisfying the required homotopy-commuting property, (iii),
and (ix). Define γn = βmn+1 ◦ αnn. Choose finite sets Gn+1,j ⊆ An+1

n+1 satisfying (vi)
and (vii). Finally, choose finite sets Fmn+1 ⊆ Amn+1 satisfying (v) and (viii).

We have now constructed the homotopy commuting diagram in the statement of
the lemma satisfying conditions (i) and (iii), and also with the properties that each
βmn is surjective, γn = βnn+1 ◦αnn, and conditions (v)–(ix) hold. For n ∈ N, note that

γn is semiprojective since βnn+1 is, and hence
(
(Ann, γn)

)∞
n=1

forms a shape system.
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The definition of γn and (iii) implies there is a commuting diagram

A1
1 A2

2 A3
3 · · ·

A1 A2 A3 · · ·

γ1

β∞,1
1

γ2

β∞,2
2

γ3

β∞,3
3

α1 α2 α3

that induces a ∗-homomorphism β : lim−→ (Ann, γn)→ A with β ◦γ∞,n = α∞,n ◦β∞,nn .
It is enough to prove β is an isomorphism: indeed, if so, then after using β to
identify lim−→ (Ann, γn) with A, both (ii) and (iv) hold.

Because βmn is surjective for all m,n ∈ N, we have β∞,nn is surjective for all
n ∈ N. Therefore, β is surjective. To prove injectivity, it suffices to show that for
all n ∈ N, a ∈ Ann with β(γ∞,n(a)) = 0, and ε > 0, there is an m ∈ N such that
‖γm,n(a)‖ < 4ε. For any such n, a, and ε, we have α∞,n(β∞,nn (a)) = 0, and hence
there is j ∈ N with j > n such that ‖αj,n(β∞,nn (a))‖ < ε. After increasing j, we
may assume 41−j < ε. Further, by (vi) and (vii) (increasing j if necessary), we
may assume there is a b ∈ Gn,j with ‖a − b‖ < ε. Conditions (vi) and (viii) yield

γj,n(b) ∈ F jj . Then the definition of γn together with (v) and (ix) imply that for
each m ∈ N with m > j,

(2) ‖αmm,j(β
m,j
j (γj,n(b)))− γm,n(b)‖ < 41−j < ε.

Since ‖αj,n(β∞,nn (a)‖ < ε and ‖a − b‖ < ε, the definition of γn,j and (iii) imply

‖β∞,jj (γj,n(b))‖ < 2ε. Hence there is m ∈ N with ‖βm,jj (γj,n(b)‖ < 3ε. Then (2)

yields ‖γm,n(b)‖ < 3ε, and hence ‖γm,n(a)‖ < 4ε, as required. This shows β is
injective and completes the proof. �

With the lemmas above, we now prove continuity of [[ · , B]]Hd. Note that this
fails for [[ · , B]] in general. For example, [[S( · ) ⊗ K, SB ⊗ K]] = E( · , B), and
Milnor’s lim1-sequence in E-theory provides an obstruction to preserving limits.

Theorem 3.10. If (A,α) is an inductive system of separable C∗-algebras with
limit A and B is a C∗-algebra, then the ∗-homomorphisms α∞,n : An → A induce
a homeomorphism

[[A,B]]Hd lim←− ([[An, B]]Hd, α
∗
n).

∼=

Proof. Let X = lim←− ([[An, B]]Hd, α
∗
n) and let fn,∞ : X → [[An, B]]Hd be the canon-

ical maps. The maps α∗∞,n induce a continuous map f : [[A,B]]Hd → X with
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fn,∞ ◦ f = α∗∞,n. We will construct a continuous inverse of f . We adopt the nota-
tion from Lemma 3.9. The diagram in Lemma 3.9 induces a commuting diagram

H(A1
1, B) H(A1

2, B) H(A1
3, B) · · ·

H(A2
1, B) H(A2

2, B) H(A2
3, B) · · ·

H(A3
1, B) H(A3

2, B) H(A3
3, B) · · ·

[[A1, B]]Hd [[A2, B]]Hd [[A3, B]]Hd [[A,B]]Hd

(α1
1)∗ (α1

2)∗ (α1
3)∗

(β1
1)∗

(α2
1)∗

(β1
2)∗

γ∗1

(α2
2)∗

(β1
3)∗

(α2
3)∗

(β2
1)∗

(α3
1)∗

(β2
2)∗

(α3
2)∗

(β2
3)∗

γ∗2

(α3
3)∗

(β3
1)∗ (β3

2)∗ (β3
3)∗

γ∗3

..
.

α∗1

..
.

α∗2

..
.

α∗3 · · ·

. . .

of topological spaces and continuous maps. By Theorem 3.7, the maps γ∗∞,n induce
a homeomorphism

[[A,B]]Hd lim←− (H(Ann, B), γ∗n).
∼=

Therefore, the maps (β∞,nn )∗ : [[An, B]]Hd → H(Ann, B) induce a continuous map
g : X → [[A,B]]Hd such that γ∗∞,n ◦ g = (β∞,nn )∗ ◦ f∞,n for all n ∈ N.

For n ∈ N, we have

γ∗∞,n ◦ g ◦ f = (β∞,nn )∗ ◦ f∞,n ◦ f = (β∞,nn )∗ ◦ α∗∞,n = γ∗∞,n,

and hence g ◦ f = id[[A,B]]Hd
. In the other direction, to show f ◦ g = idX , it suffices

to show fn,∞ ◦ f ◦ g = fn,∞ for all n ∈ N. To this end, fix n ∈ N. By Theorem 3.7,
the maps β∞,mn , m ∈ N, induce a homeomorphism

[[An, B]]Hd lim←− (H(Amn , B), (βmn )∗),
∼=

so it suffices to show (β∞,mn )∗ ◦ fn,∞ ◦ f ◦ g = (β∞,mn )∗ ◦ fn,∞ for all m ∈ N with
m > n. For such m, we compute

(β∞,mn )∗ ◦ fn,∞ ◦ f ◦ g = (β∞,mn )∗ ◦ α∗∞,n ◦ g
= (αmm,n)∗ ◦ (β∞,mm )∗ ◦ α∗∞,m ◦ g
= (αmm,n)∗ ◦ γ∗∞,m ◦ g
= (αmm,n)∗ ◦ (β∞,mm )∗ ◦ f∞,m
= (β∞,mn )∗ ◦ α∗m,n ◦ f∞,m
= (β∞,mn )∗ ◦ f∞,n,

as required. So f ◦ g = idX , and f is a homeomorphism. �
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4. Applications

Recall from Definition 1.4 that every strong homotopy morphism (f, φ, h) be-
tween inductive systems of C∗-algebras (A,α) and (B, β) induces an asymptotic
morphism

h-lim−→ (f, φ, h) : lim−→ (A,α)
≈−→ lim−→ (B, β).

Dadarlat showed in [8] that this construction produces a functor ho(ind-C∗)→ AM
on a suitable category ho(ind-C∗) (the objects of which are inductive systems of
separable C∗-algebras), and restricts to an equivalence on the strong shape cate-
gory, defined as the full subcategory s-sh of ho(ind-C∗) whose objects of which are
shape systems (Theorem 4.1). We will combine this result with our work in the
previous sections to show that the Hausdorffized asymptotic category AMHd (see
Definition 3.3) is equivalent to the shape category sh (Theorem 4.3). This will prove
Theorem C.

In Section 4.2, we apply these results to obtain a topology on E-theory. In par-
ticular, we prove Theorems A and B from the introduction. Some other properties
of E-theory mentioned in the introduction are also discussed.

4.1. The Hausdorffized homotopy limit functor. We first establish some no-
tation. There are several categories appearing in this subsection. For convenience,
abbreviated forms of the definitions are collected in Table 1.

Let C∗ be the category of separable C∗-algebras and ∗-homomorphisms. If A and
B are C∗-algebras, we write [A,B] for the set of homotopy equivalence classes of
∗-homomorphisms A→ B. Let ho(C∗) be the category whose objects are separable
C∗-algebras and where the morphisms A→ B are the elements of [A,B].

For any category D, we let ind-D denote the category of (sequential) inductive
systems in D modulo passing to subsequences. More precisely, objects in ind-D are
given by inductive systems (A,α) in D and a morphism (f, φ) : (A,α) → (B, β) is
represented by a pair consisting of a strictly increasing function f : N → N and
a sequence φ = (φn : An → Bf(n))

∞
n=1 of morphisms such that for all n ∈ N,

βf(n+1),f(n) ◦ φn = φn+1 ◦ αn. Two morphisms

(f, φ), (g, ψ) : (A,α)→ (B, β)

are equivalent, written as (f, φ) ∼= (g, β), if for all n ∈ N, there is m ∈ N such that
m > max{f(n), g(n)} and βm,f(n) ◦ φn = βm,g(n) ◦ ψn. Note that if D is closed
under sequential inductive limits, then there is a canonical inductive limit functor
lim−→ : ind-D→ D. In particular, this is the case for D = C∗.

In the special case D = ho(C∗), we will always view morphisms in ind-ho(C∗) as
being represented by a homotopy morphism (f, φ) of inductive systems (see Defi-
nition 1.3) and write the equivalence class of such a morphism as [f, φ]. Therefore,
given homotopy morphisms

(f, φ), (g, ψ) : (A,α)→ (B, β),

we have [f, φ] = [g, β] if and only if for all n ∈ N, there is m ∈ N such that
m > max{f(n), g(n)} and the ∗-homomorphisms β∞,f(n) ◦ φn and β∞,g(n) ◦ψn are
homotopic.

As pointed out in [8, Section 1.4], the inductive limit functor does not descend to
a functor ind-ho(C∗)→ ho(C∗). Dadarlat addressed this by using a variation of the
category ind-ho(C∗), called ho(ind-C∗), which may be regarded as the homotopy
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Category Objects Morphisms

C∗ Separable C∗-algebras φ, ∗-homomorphisms

AM Separable C∗-algebras [[φ]] ∈ [[A,B]], asymptotic homo-
topy classes of ∗-homomorphisms

AMHd Separable C∗-algebras [[φ]]Hd ∈ [[A,B]]Hd, Hausdorff-
ized asymptotic homotopy classes
of homomorphisms

ind-D Inductive systems in D (f, φ), pairs of increasing func-
tions on N and sequences of com-
patible morphisms in D

ho(C∗) Separable C∗-algebras [φ] ∈ [A,B], homotopy classes of
∗-homomorphisms

ho(ind-C∗) Inductive systems in C∗ [[f, φ, h]], equivalence classes of
strong homotopy morphisms

sh Shape systems Same as ind-ho(C∗)

s-sh Shape systems Same as ho(ind-C∗)

Table 1. Some of the categories considered in this section.

category of ind-C∗. Briefly, objects are given by (sequential) inductive systems
of separable C∗-algebras (as in ind-C∗), and morphisms are equivalence classes
[[f, φ, h]] of strong homotopy morphisms of inductive systems. We refer the reader
to [8, Definition 3.6] for the precise definition of the equivalence relation, which
is a modified version of the equivalence in ind-ho(C∗) that accounts for the extra
data given by the sequence of homotopies h. In particular, any morphism in ind-C∗

induces a morphism in ho(ind-C∗) with constant homotopies, yielding a functor
Ho: ind-C∗ → ho(ind-C∗) (which is the identity on objects.)

For our purposes, the most relevant property of ho(ind-C∗) is that the homotopy
limit construction h-lim−→ induces a functor ho(ind-C∗)→ AM, which we continue to

write as h-lim−→. It is proved in [8, Section 2] that

ind-C∗ ho(ind-C∗)

C∗ AM

Ho

lim−→ h-lim−→
As

commutes, where As is the identity on objects and As(φ) = [[φ]] for every ∗-homo-
morphism φ.

The shape category sh and strong shape category s-sh are defined as the full
subcategories sh ⊆ ind-ho(C∗) and s-sh ⊆ ho(ind-C∗) whose objects are given by
shape systems. The following result is due to Dadarlat.

Theorem 4.1 ([8, Theorem 3.7]). The homotopy limit functor restricts to an equiv-
alence of categories

h-lim−→ : s-sh
∼−→ AM.
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Theorem 4.3 below is the analog of Theorem 4.1 for the categories sh and AMHd.
We will need some more notation. Let F: ho(ind-C∗) → ind-ho(C∗) be the functor
that is the identity on objects and is defined on morphisms by

F([[f, φ, h]]) = [f, φ]

and let Hd: AM → AMHd be the functor that is the identity on objects and is
defined by morphisms by

Hd([[φ]]) = [[φ]]Hd.

Theorem 4.2. There is a unique functor h-lim−→Hd
: ind-ho(C∗)→ AMHd such that

ind-C∗ ho(ind-C∗) ind-ho(C∗)

C∗ AM AMHd

Ho

lim−→

F

h-lim−→ h-lim−→Hd

As Hd

commutes. Explicitly, on objects, h-lim−→Hd
(A,α) = lim−→ (A,α), and on morphisms,

h-lim−→Hd
([f, φ]) = [[h-lim−→(f, φ, h)]]Hd, where (f, φ, h) is a strong homotopy mor-

phism.

Proof. It suffices to show that h-lim−→Hd
is well-defined on morphisms as the rest

follows easily. This is immediate from the well-definedness of h-lim−→ and Proposi-
tion 3.5. �

The following is the precise version of Theorem C from the introduction.

Theorem 4.3. The Hausdorffized homotopy limit functor induces an equivalence
of categories

h-lim−→Hd
: sh

∼−→ AMHd.

Proof. We need to prove that h-lim−→Hd
is full, dense, and faithful.

To prove that h-lim−→Hd
is full means to prove that, given objects (A,α) and (B, β)

in sh, the map

(3) Homsh
(
(A,α), (B, β)

)
→ HomAMHd

(
h-lim−→Hd

(A,α),h-lim−→Hd
(B, β)

)
induced by h-lim−→Hd

is surjective. This is straightforward: the functor Hd is full

and the restriction of h-lim−→ to s-sh is an equivalence of categories (Theorem 4.1),

so the commutativity of the diagram in Theorem 4.2 implies that the map in (3) is
surjective.

To prove that h-lim−→Hd
is dense means to prove that given an object A in AMHd,

there is an object (A,α) in sh such that A is isomorphic to h-lim−→Hd
(A,α). This is

immediate from the statement that every separable C∗-algebras has a shape system
(see [1, Corollary 4.3]).

The fact that h-lim−→Hd
is faithful is more involved. We need to prove that, given

objects (A,α) and (B, β) in sh, the map in (3) is injective. Write A = lim−→(A,α)

and B = lim−→ (B, β). We may further assume the connecting maps in the shape

system (B, β) are surjective. Indeed, B admits a shape system (B′, β′) with each

β′n surjective, and then Theorem 4.1 implies (B, β) and (B′, β′) are isomorphic in
the (strong) shape category. So we may replace (B, β) with (B′, β′).

Suppose (f, φ), (g, ψ) : (A,α)→ (B, β) are homotopy morphisms and that

h-lim−→Hd
([f, φ]) = h-lim−→Hd

([g, ψ]).
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To simplify the notation, and without loss of generality, we assume f = g = idN. Fix
n ∈ N. Our goal is to show that that, for large enough m ∈ N, βm,n◦φn is homotopic
to βm,n ◦ ψn, since this implies [φ] = [ψ] in [(A,α), (B, β)]. By Corollary 1.8 and
the semiprojectivity of αn, there exist a finite set G ⊂ An+1 and δ > 0 such that if
D is a C∗-algebra and θ, ρ : A→ D are ∗-homomorphisms with ‖θ(a)− ρ(a)‖ < δ,
it must be that θ ◦ αn is homotopic to ρ ◦ αn.

The hypothesis and Proposition 1.5 imply that

[[β∞,n+3 ◦ φn+3]]Hd = [[φ ◦ α∞,n+3]]Hd = [[ψ ◦ α∞,n+3]]Hd = [[β∞,n+3 ◦ ψn+3]]Hd.

Because αn+2 is semiprojective, Lemma 3.4 implies that β∞,n+3 ◦ φn+3 ◦ αn+2 is
homotopic to β∞,n+3 ◦ψn+3 ◦αn+2. Moreover, the fact that φ and ψ are homotopy
morphisms implies that β∞,n+2 ◦ φn+2 is homotopic to β∞,n+3 ◦ φn+3 ◦ αn+2, and
that β∞,n+2 ◦ ψn+2 is homotopic to β∞,n+3 ◦ ψn+3 ◦ αn+2.

We have that β∞,n+2 ◦ φn+2 is homotopic to β∞,n+2 ◦ ψn+2. Hence there is a
∗-homomorphism θ : An+2 → C([0, 1], B) such that

ev0 ◦ θ = β∞,n+2 ◦ φn+2 and ev1 ◦ θ = β∞,n+2 ◦ ψn+2.

Let βm = idC[0,1] ⊗ βm and regard C([0, 1], B) as the limit of the inductive system

(C([0, 1], Bm), β). If m ∈ N is large enough (and m > n+2), the semiprojectivity of

αn+1 provides a ∗-homomorphism θ̃ : An+1 → C([0, 1], Bm) with β∞,m◦θ̃ = θ◦αn+1.
Therefore,

β∞,m ◦ ev0 ◦ θ̃ = ev0 ◦ β∞,m ◦ θ̃ = ev0 ◦ θ ◦ αn+1 = β∞,n+2 ◦ φn+2 ◦ αn+1.

Similarly, β∞,m ◦ ev1 ◦ θ̃ = β∞,n+2 ◦ ψn+2 ◦ αn+1. Therefore, if m is large enough,

we have that ‖(ev0 ◦ θ̃)(a) − (βm,n+2 ◦ φn+2 ◦ αn+1)(a)‖ < δ for all a ∈ G. Thus

ev0 ◦ θ̃ ◦ αn and βm,n+2 ◦ φn+2 ◦ αn+1 ◦ αn are homotopic for large enough m, as

are ev1 ◦ θ̃ ◦ αn and βm,n+2 ◦ ψn+2 ◦ αn+1 ◦ αn, by the choice of G and δ.
Now, βm,n+2 ◦ φn+2 ◦ αn+1 ◦ αn and βm,n ◦ φn are homotopic, and hence so

are βm,n+2 ◦ ψn+2 ◦ αn+1 ◦ αn and βm,n ◦ ψn using that φ and ψ are homotopy

morphisms. Since ev0 ◦ θ̃ ◦αn and ev1 ◦ θ̃ ◦αn are homotopic, we (finally) conclude
that βm,n ◦ φn and βm,n ◦ ψn are homotopic, as desired. �

Two separable C∗-algebras are isomorphic in the category sh if and only if they
are isomorphic in the category s-sh by [8, Theorem 3.9]. In combination with
Theorem 4.3, this gives the following.

Corollary 4.4. Two separable C∗-algebras are isomorphic in the category AM if
and only if they are isomorphic in the category AMHd. In fact, if A and B are
separable C∗-algebras and x ∈ [[A,B]] is such that Hd(x) ∈ [[A,B]]Hd is an iso-
morphism, then x is an isomorphism.

4.2. The topology on E-theory. In this final subsection, we apply the results of
the previous sections to E-theory and prove Theorems A and B.

For a C∗-algebra A define SA = C0(R) ⊗ A, and write K for the C∗-algebra
of compact operators on a separable infinite dimensional Hilbert space. Given
separable C∗-algebras A and B, Connes and Higson defined

E(A,B) = [[SA⊗K, SB ⊗K]];

see [7, Section 4]. Then E(A,B) is an abelian group with the sum of [[φ]] and [[ψ]]
given by the orthogonal sum: fix an isomorphism κ : M2(K)→ K (which is unique



A TOPOLOGY ON E-THEORY 27

up to homotopy) and define

[[φ]] + [[ψ]] = [[idSB ⊗ κ]] ◦
[[(

φ 0
0 ψ

)]]
.

The existence of the topology on E(A,B) promised in Theorem A now follows
immediately from the existence of our topology on asymptotic morphisms.

Proof of Theorem A. This is a special case of Theorems 2.10 and 2.12. �

As expected, the algebraic operations on E(A,B) are continuous.

Theorem 4.5. If A, B, and D are separable C∗-algebras, then E(A,B) is a topo-
logical group and the product E(A,B)× E(B,D)→ E(A,D) is jointly continuous

Proof. The continuity of the product is immediate from Theorem 2.15. To show
E(A,B) is a topological group, it suffices to show the continuity of subtraction.
Suppose (xn)∞n=1 and (yn)∞n=1 are sequences in E(A,B) with xn → x and yn → y
in E(A,B). Let x̂, ŷ ∈ E(A,C(N†, B)) be such that x̂(m) = xm, x̂(∞) = x,
ŷ(m) = ym, and ŷ(∞) = y for all m ∈ N. Then z = x̂ − ŷ ∈ E(A,C(N†, B))
satisfies z(m) = xm − ym for m ∈ N and z(∞) = x − y. So xm − ym → x − y, as
required. �

For separable C∗-algebrasA andB, Dadarlat [9] defined a topology onKK(A,B)
that is second countable and satisfies Pimsner’s condition: a sequence (xn) in
KK(A,B) converges to x∞ if and only if there exists y ∈ KK(A,C(N†, B)) such
that y(n) = xn for all n ∈ N and y(∞) = x∞. Such a topology is obviously unique.
Therefore, when A is nuclear (or just K-nuclear), so that KK(A,B) ∼= E(A,B) via
an isomorphism that respects the product structure (see [7] or [2, Theorem 25.6.3]),
Theorem A shows that the Dadarlat’s topology and ours coincide.

Also in [9], Dadarlat defined KL(A,B) to be the quotient of KK(A,B) by the
closure of {0}. (This followed an earlier definition of Rørdam [19] that required the
UCT.) In a similar fashion, we define EL(A,B) to be the quotient of E(A,B) by
the closure of {0}. This coincides with [[SA ⊗ K, SB ⊗ K]]Hd (see Definition 3.1)
by the continuity of addition and inverses (Theorem 4.5). When A is nuclear (or
just K-nuclear), KL(A,B) ∼= EL(A,B).

Theorem 4.6 (cf. [9, Proposition 2.8]). If A, B, and D are separable C∗-algebras,
then EL(A,B) is a totally disconnected Polish group, and the composition product
EL(A,B)× EL(B,D)→ EL(A,D) is jointly continuous.

Proof. The group structure on EL(A,B) follows from Theorem 4.5, and Theo-
rem 3.7 implies EL(A,B) is a Polish space. The continuity of composition is a
special case of Proposition 3.2. �

Now we turn to the proof of Theorem B, which states that—unlike E-theory and
KK-theory—the group EL( · , B) always preserves inductive limits.

Proof of Theorem B. This follows immediately from Theorem 3.10 and the remarks
above to identify EL and KL in the presence of nuclearity. �

Two (separable) C∗-algebras A and B are KK-equivalent if there is an invertible
element in KK(A,B). Similar terminology is used for KL, E, and EL. Dadarlat
showed in [9, Corollary 5.2], using the Kirchberg–Phillips theorem, that two nuclear
C∗-algebras are KK-equivalent if and only if they are KL-equivalent. The following
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strengthening of this statement eschews the nuclearity assumption. In the nuclear
setting, it provides a proof of Dadarlat’s result that does not depend on classification
theorems.

Proposition 4.7. Two separable C∗-algebras are E-equivalent if and only if they
are EL-equivalent.

Proof. This is a special case of Corollary 4.4. �

We end by pointing out that the usual tools used to compute KL-groups can
also be used to compute EL-groups. If a separable C∗-algebra A is E-equivalent
to a commutative C∗-algebra, then there is a natural short exact sequence

0→ Ext1
Z(K∗+1(A),K∗(B))→ E(A,B)→ HomZ(K∗(A),K∗(B))→ 0,

known as the universal coefficient theorem (UCT) in E-theory. This can be deduced
from the universal coefficient theorem in KK-theory of [20] by identifying E(A,B)
with E(D,B), and then with KK(D,B), for some commutative C∗-algebra D (for
which the UCT holds). In a similar way, one can borrow the version of the UCT
from [10] to prove the following.

Theorem 4.8. If A and B are separable C∗-algebras, and A is E-equivalent to a
commutative C∗-algebra, then

(i) The closure of {0} in E(A,B) coincides with the image of the subgroup of
Ext1

Z(K∗+1(A),K∗(B)) consisting of pure extensions.
(ii) The natural map EL(A,B) → HomΛ(K(A),K(B)) is an isomorphism of

topological groups, where the total K-theory groups K(A) and K(B) are
endowed with the discrete topology and the space of homomorphisms is
equipped with the topology of pointwise convergence.

Proof. As noted above, we may identify E(A,B) with KK(D,B) for some commu-
tative C∗-algebra D that is E-equivalent to A. So it suffices to prove the analogous
results in KK-theory. These are known: for example, (i) follows form [24, Theo-
rem 3.3] and (ii) follows from [9, Theorem 4.1]. �

Remark 4.9. By the main result of [17], for separable C∗-algebras A and B, there
is a natural isomorphism E(A,B) ∼= KK(SA,Q(B⊗K)), where for a C∗-algebra D,
M(D) denotes the multiplier algebra of D, and Q(D) denotes the corona M(D)/D.
One might attempt to use this isomorphism and the topology on KK from [9] to
obtain an alternate definition of the topology on E(A,B). An immediate technical
hurdle that one faces is that the topology on KK from [9] requires the second
variable to be separable, whereas Q(B ⊗ K) is non-separable whenever B is non-
zero. Separability, as opposed to σ-unitality, is important to obtain the existence of
absorbing representations using the main result of [26], which is a critical ingredient
in the definition of the topology in [9].

Moreover, if this technical hurdle could be overcome (e.g. if the result from
[26] could be extended to σ-unital codomains or if one could somehow pass to the
limit over separable subalgebras of the codomain, as in [6, Appendix B]), then the
topology on E(A,B) obtained using the isomorphism above would be defined in
terms of ∗-homomorphisms

SA→M(Q(B ⊗K)⊗K).
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This would be a rather difficult and impractical definition to work with. The
topology introduced in this paper is defined directly in terms of asymptotic mor-
phisms and, in our opinion, is more conceptual and easier to work with than this
possible alternative. Moreover, it is not clear to the authors how to prove the
E-theoretic version of Pimsner’s condition of Theorem A (or the other properties
established in this section) for this potential alternate definition from a topology on
KK(SA,Q(B ⊗K)). The main difficulty would be understanding the relationship
between C(N†, Q(B ⊗K)) and Q(C(N†, B)⊗K)).
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